

Classical Approach to 2nd Law for CM

- Start with observations about the ability to build devices (thermodynamic cycles)
- Clausius Statement of 2nd Law
 - concerns cycles that cause heat transfer from low temperature body to high temperature body (refrigerators and heat pumps)
- Kelvin-Planck Statement of 2nd Law
 - concerns cycles that use heat transfer to produce work/power (heat engines)
- Both observations can be shown to be "equivalent", violation of one equals violation of the other
- Can make other similar equivalent statements of 2nd Law

2nd Law Closed Systems: Classical Approach-1

Clausius Statement of the 2nd Law

- It is impossible to construct a device that <u>operates in a cycle</u> and produces no effect on surroundings other than heat w transfer from a lower temperature body to a higher temperature body (1850)
 - means refrigerators and heat pumps require work input (power)

2nd Law Closed Systems: Classical Approach-2

Kelvin-Planck Statement of the 2nd Law

- It is impossible to construct a device <u>that operates in a cycle</u> and has no effect on surroundings other than producing a net work output and receiving (an equivalent amount of) heat transfer from a single <u>Thermal</u> <u>Energy Reservoir (TER)</u>
 - means heat engines must produce "waste" heat that must be transferred to surroundings

TER: fixed volume mass, only energy exchange as Q, and has uniform and (nearly) constant T

^{2&}lt;sup>nd</sup> Law Closed Systems: Classical Approach-3

Carnot's Propositions

- How is temperature related to Second Law?
- Answer from examining reversible heat engines (classical example is Carnot cycle)
- Carnot's Propositions corollaries of Clausius and Kelvin-Planck statements of 2nd Law
 - 1.It is impossible to construct a heat engine that operates between two TERs that has a higher thermal efficiency ($\eta_{th} \equiv W_{net,out}/Q_H$) than a reversible heat engine ($\eta_{th,irrev} < \eta_{th,rev}$)
 - 2.All reversible heat engines that operate between same two TERs have the same $\eta_{th,rev}$

Proof of Carnot's Second Proposition

• Take two reversible devices, heat engine (E) that runs refrigerator (R) (refrig.=heat engine run backwards) using same TERs

• LET
$$\eta_{th,E} > \eta_{th,R} (W/Q_{H,E} > W/Q_{H,R})$$

- $Q_{H} = Q_{H,R} Q_{H,E} \bullet Q_{H,E} < Q_{H,R} (also Q_{L,E} < Q_{L,R})$
 - But if call both devices one system, it looks like refrigerator with no work input - <u>impossible</u>

2nd Law Closed Systems: Classical Approach-5

Thermodynamic Temperature

• Since $\eta_{th,rev}$ only depends on <u>identity</u> of TERs, only a function of absolute T

 $\eta_{th,rev} = \eta(T_H, T_L)$

• Rewrite efficiency, use 1st Law $\eta_{th} = W_{net,out}/Q_H = (Q_H - Q_L)/Q_H$

 $\eta_{th}=\!1\!-\!Q_{\rm L}/Q_{\rm H}$

• Apply this to many reversible engines, implies $[Q_L/Q_H]_{rev} = f(T_L)/f(T_H)$

- chose def'n. of thermodynamic T

$$[Q_L/Q_H]_{rev} = T_L/T_H ,$$

- use in η , $\eta_{th,rev} = 1 - T_L/T_H$ **Carnot Efficiency** - true for totally rev. heat engines

2nd Law Closed Systems: Classical Approach-6

TER @ T_µ

Heat

Engine

TER @ T_I

 W_{out}

Q_H

 Q_{I}

Clausius Inequality, Entropy, and 2nd Law

• Consider any reversible heat engine

