Rocket Nozzle Thrust

- Internal expansion (converging-diverging) nozzles with fixed A_e/A_t have ~isentropic expansion (no shocks) for only one value of p_a/p_o ($p_e=p_a$)

- Problem for rocket nozzles in launch vehicles
 - large change in p_a with altitude
 - only get near optimum thrust for small range of p_a ($p_e \approx p_a$)
 - bigger thrust loss when overexpanded (low altitude)
Unconfined Expansion Nozzles

• Alternate approach
 – nozzle geometries where expansion is controlled more by ambient pressure rather than nozzle walls

• Plug/Spike nozzle
 – flow expands along contoured centerbody
 – external outer wall ends at (approx.) throat
 – design condition \((p_{a,\text{design}}) \), expansion waves intersect centerbody tip, \(~1\text{-d flow}\)

1st use: Me 262 WW II turbojet
Plug Nozzle: Off-Design Operation

• Expansion controlled by p_a, not by nozzle walls

• $p_a < p_{a,\text{design}}$ (underexpanded)
 – $p_{\text{tip}} = p_{a,\text{design}}$, keeps expanding
 – no shocks, slight flow misalignment

• $p_a > p_{a,\text{design}}$ (overexpanded)
 – $p = p_a$ before plug ends
 – weak shocks and expansions downstream
 – better than CD in “overexpanded” case

• Problem: keeping spike/plug cool
Aerospike Nozzle

- Cut-off end of plug/spike
 - flat ended plug
- Flow lower temperature (coolant) through plug
 - cools plug and prevents recirculation in plug wake
 - inner flow “takes the place” of the rest of the plug
- Linear Aerospike engine
 - uses modular arrays of combustors to form 2-d aerospike

From Hill and Peterson (4451 text)

Lockheed-VentureStar test (2001)