Supersonic Flow Turning

- Previously, we examined supersonic flow over (sharp) concave corners/turns
 - oblique shock allows flow to make this (compression) turn

- What happens if:
 - turn is convex (expansion)
 - already shown expansion “shock” impossible (entropy would be destroyed)
 - turn is gradual (concave or convex)

Gradual Expansion Turn

- Gradual turn is made up of large number of infinitesimal turns/corners
- Each turn has infinitesimal flow change
 - each turn produced by infinitesimal wave \(\Rightarrow \text{Mach wave} \)
- Flow is uniform and isentropic between each turn/corner
 - length between each is arbitrary
 - could be zero length (sharp turn) and waves collapse to one point
Prandtl Meyer Expansion Fan

• Problem
 – given upstream conditions (1)
 and turning angle (δ)
 – find downstream conditions (2)

• Goal
 – Mach number relations (similar to shock relations)

• Equations
 – use mass, momentum, energy conservation, Mach
 number def’n., state equations

• Assumptions
 – steady flow, quasi-1d, reversible+adiabatic (isentropic)

Mach Relations

• Approach
 – begin with single Mach wave that expands supersonic
 flow through an infinitesimal (differential) angle of
 magnitude dv
 – essentially using differential
 control volume

• Mass/Momentum Conservation
 – using same type of approach as for
 oblique shocks (two momentum components: t, n)
 – find lack of pressure gradient tangent to wave gives
 \(v_t = \text{constant across wave} \)
Relation Between Velocity and Angles

- Use $v_t =$ constant

\[
v_{t, \text{upstream}} = v_{t, \text{downstream}}
\]

\[
v \cos \mu = (v + dv) \cos (\mu + dv)
\]

\[
dv \to 0
\]

\[
v \cos \mu = v \cos \mu - dv \sin \mu + dv \cos \mu - dv \sin \mu
\]

\[
\sin \mu = 1/M, \quad \sin^2 \mu + \cos^2 \mu = 1
\]

\[
\frac{dv}{v} = \frac{1}{\sqrt{M^2 - 1}} dv
\]

(VIII.1)

Relation Between M and dv

- Relate v and M

\[
v = Ma
\]

\[
\frac{dv}{v} = \frac{dM}{M} + \frac{da}{a}
\]

\[
\frac{dv}{v} = \frac{dM}{M} + \frac{d\sqrt{T}}{\sqrt{T}} = \frac{dM}{M} + \frac{1}{2} \frac{dT}{T}
\]

\[
\frac{dv}{v} = \frac{dM}{M} \left[\frac{(\gamma - 1)/2}{1 + \left(\frac{\gamma - 1}{2}\right) M^2} \right] = \frac{dM}{M} \left[\frac{1}{1 + \left(\frac{\gamma - 1}{2}\right) M^2} \right]
\]

Energy Conservation

\[
T = T' \left(1 + \frac{\gamma - 1}{2} M^2\right) = \text{const.}
\]

\[
\frac{dT}{T} = 0 = \frac{dT}{T} + \frac{1}{2} \frac{dM}{M} \left[\frac{(\gamma - 1)/2}{1 + \left(\frac{\gamma - 1}{2}\right) M^2} \right]
\]

\[
\frac{dT}{T} = \frac{1}{2} \frac{dM}{M} \left[\frac{1}{1 + \left(\frac{\gamma - 1}{2}\right) M^2} \right]
\]

\[
\frac{dT}{T} = \frac{(\gamma - 1)/2}{1 + \left(\frac{\gamma - 1}{2}\right) M^2}
\]
Relation Between M and \(dv \) (con’t)

- Relate VIII.1 and last eqn.

\[
\frac{dv}{v} = \frac{1}{\sqrt{M^2 - 1}} \frac{dM}{M} = \frac{1}{\left(1 + \frac{\gamma - 1}{2} M^2\right)} M \frac{dM}{M} \]

\[
dv = \frac{\sqrt{M^2 - 1}}{1 + \frac{\gamma - 1}{2} M^2} \frac{dM}{M} \quad \text{(VIII.2)}
\]

- \(dM \) is change in Mach number associated with \(dv \) turn angle

- Need finite angle, \(\delta = v_2 - v_1 \) and finite \(\Delta M \)

\[
v_2 - v_1 = \int_{v_1}^{v_2} dv = \int_{M_1}^{M_2} \frac{\sqrt{M^2 - 1}}{M} \frac{dM}{M_1 + \frac{\gamma - 1}{2} M^2} \]

- Perform Integration

\[
v_2 - v_1 = \delta = \sqrt{\frac{\gamma + 1}{\gamma - 1}} \left[\tan^{-1} \left(\frac{\gamma - 1}{\gamma + 1} \right) - \tan^{-1} \left(\frac{\sqrt{M_2^2 - 1}}{M_{M_2}} \right) \right] \]

\[
\text{(VIII.3)}
\]

- So, given \(\delta \) (=\(v_2 - v_1 \)) and \(M_1 \)
 - could “solve” VIII.3 for \(M_2 \)
- Can not invert VIII.3 analytically (\(M_2 = f(M_1, \delta) \))
 - either use *iterative* (e.g., numerical or guessing) method
 - or find \(v \) as a function of \(M \) and tabularize or graph solution
Tabular Solutions/Reference Condition

\[\nu_2 - \nu_1 = \left[\frac{\gamma + 1}{\gamma - 1} \tan^{-1} \frac{\gamma - 1}{\gamma + 1} (M_1^2 - 1) - \tan^{-1} \sqrt{M_1^2 - 1} \right] M_1 \]

- Want to find \(\nu = \nu(M) \) [really \(\nu_2 = \nu_2(M_2) \)] for any \(M \)
 - need to choose (arbitrary) reference condition, i.e., pick an \(M \) where \(\nu = 0 \)
 - let's choose \(\nu = 0 \) at \(M = 1 \)

\[\nu = \frac{\gamma + 1}{\gamma - 1} \tan^{-1} \frac{\gamma - 1}{\gamma + 1} (M_1^2 - 1) - \tan^{-1} \sqrt{M_1^2 - 1} \]

(\text{VIII.4} \text{ Appendix D (John)} \text{ for } \gamma = 1.4, M \leq 5)

- \(\nu \) represents angle through which a sonic flow would have to turn to reach \(M \)

\[\nu \text{ is turn angle for } M = 1 \text{ to } M_1 \]

Using the Prandtl Meyer Tables

- To find \(M_2 \) given \(M_1 \) and \(\delta \)
 - find \(\nu_1 \) (for given \(M_1 \)) from table
 - get \(\nu_2 \) from \(\delta = \nu_2 - \nu_1 \)
 - look up \(\nu_2 \) in table to find \(M_2 \)

- To find \(T_2, p_2, \ldots \)
 - use isentropic flow relations since expansion is isentropic (no shock)
 - e.g.,
 \[\frac{T_2}{T_1} = 1 + \frac{\gamma - 1}{2} M_1^2 \implies \frac{T_2}{T_1} = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2} \]
Example

- **Given:** Uniform Mach 2 flow of nitrogen at 300 K flows over compound wall corner: two turns, 20° and 6°

- **Find:**
 M and T after final turn

- **Assume:** N₂ is TPG/CPG with γ=1.4, steady, adiabatic, no work, inviscid,....

Example (con’t)

- **Analysis:** (class exercise)
 1. To find \(M_2\) given \(M_1\) and \(\delta\)
 a. find \(\nu_1\) (for given \(M_1\)) from table
 b. get \(\nu_2\) from \(\delta=\nu_2-\nu_1\)
 c. look up \(\nu_2\) in table to find \(M_2\)

<table>
<thead>
<tr>
<th>M</th>
<th>M</th>
<th>M</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>26.38</td>
<td>2.60</td>
<td>41.41</td>
</tr>
<tr>
<td>2.01</td>
<td>26.65</td>
<td>2.61</td>
<td>41.64</td>
</tr>
<tr>
<td>2.02</td>
<td>26.93</td>
<td>2.62</td>
<td>41.86</td>
</tr>
<tr>
<td>2.03</td>
<td>27.20</td>
<td>2.63</td>
<td>42.09</td>
</tr>
<tr>
<td>2.04</td>
<td>27.48</td>
<td>2.65</td>
<td>42.31</td>
</tr>
<tr>
<td>2.05</td>
<td>27.76</td>
<td>2.67</td>
<td>42.53</td>
</tr>
<tr>
<td>2.06</td>
<td>28.04</td>
<td>2.69</td>
<td>42.75</td>
</tr>
<tr>
<td>2.07</td>
<td>28.32</td>
<td>2.71</td>
<td>42.97</td>
</tr>
<tr>
<td>2.08</td>
<td>28.60</td>
<td>2.73</td>
<td>43.19</td>
</tr>
<tr>
<td>2.09</td>
<td>28.88</td>
<td>2.75</td>
<td>43.40</td>
</tr>
<tr>
<td>2.10</td>
<td>29.16</td>
<td>2.77</td>
<td>43.62</td>
</tr>
<tr>
<td>2.11</td>
<td>29.44</td>
<td>2.79</td>
<td>43.84</td>
</tr>
</tbody>
</table>

AE3450
Example (con’t)

• Analysis: (solution)

Prandtl Meyer Fan Angle

• Fan angle
 – angle between first and last Mach wave
 – useful to determine when expansion has ended in flowfield for a given distance away from wall

• From geometry

\[
\text{Fan Angle} = \mu_1 - (\mu_2 - \delta) = (\mu_1 - \mu_2) + \delta \quad (\text{VIII.5})
\]
Prandtl Meyer Turns at High M

- Examine plot of ν as function of M

$$\nu_{\text{max}} = 130.45^\circ$$

- As M increases, reach maximum turn angle ($\nu_{\text{max}} \approx 130.5^\circ$ for $\gamma = 1.4$)
- So as M_1 increases, max. angle flow can turn (δ_{max}) decreases

Example
$M_1 = 2 \Rightarrow \delta_{\text{max}} = 130.45^\circ - 26.38^\circ = 104.1^\circ$
$M_1 = 6 \Rightarrow \delta_{\text{max}} = 130.45^\circ - 84.96^\circ = 45.5^\circ$

Maximum Turn Angle

- Analytic Expression

$$\nu = \frac{\gamma + 1}{\gamma - 1} \tan^{-1} \left(\frac{\gamma - 1}{\gamma + 1} M^2 - 1 \right) - \tan^{-1} \sqrt{M^2 - 1}$$

For $M \to \infty: \sqrt{M; tan^{-1}(M)} \to 90^\circ$

$$\nu_{\text{max}} = \left(\frac{\gamma + 1}{\gamma - 1} - 1 \right) \times 90^\circ$$ (VIII.6)

- As γ decreases (higher temperatures, bigger molecules), maximum turn angle increases
- δ_{max} smaller in real flows
 - T and p drop through turn
 - Condensation of gas
 - Nonequilibrium flow
Continuous (Smooth) Expansions

- Already showed that it does not matter if expansion turn is sharp or smooth
 - still get same solution,
 - P-M fan=infinite set of Mach waves
 - unless we exceed the maximum turning angle, final properties just function of total turn angle
 - smooth turn just means expansion process takes place over longer distance

Continuous (Smooth) Compressions

- What happens if we have a smooth concave turn?
 - since flow direction change is small, can still get set of weak Mach waves
 - however unlike expansions, compressions merge
 - together they coalesce to form oblique shock
 - flow that went through PM compression is isentropic, outer flow has entropy rise (p_o loss)
 - size of PM region depends on M_1 and curvature