Reflected Waves

- Already examined what happens when normal shock “hits” a boundary
 - if incident shock hits solid wall, get reflected (normal) shock - required to satisfy velocity boundary condition (v=0)
 - if it hits open end, get reflected expansion waves - satisfy pressure boundary condition (p=p_a<p_2)
- Wave reflections “impose” boundary (pressure or velocity) on flow

Oblique Shock Reflection From Wall

- Consider “weak” (M_2>1) oblique shock wave impinging on a flat wall
 - incident shock wave turns flow toward the lower wall
 - flow can not pass through boundary, must turn back parallel to lower wall - velocity boundary condition
 - flow turns back on itself \(\Rightarrow \) compression \(\Rightarrow \) in this case, reflected wave is oblique shock
- Reflected shock weaker than incident shock
 - M_2<M_1
Example: Oblique Shock Reflection

- **Given:** Mach 3.2 flow with static pressure of 25 psia approaching a 17° (δ_1) turn produces oblique shock wave at 33° (θ_1). Oblique shock then “hits” bottom wall, producing reflected oblique shock.

- **Find:**
 θ_i, θ_r, M_2, M_3, p_2, p_3

- **Assume:** TPG/CPG with $\gamma=1.4$, steady, adiabatic, no work, inviscid except shocks, ….
Mach Reflection

- If M_2 low enough, required turning angle for reflected wave may exceed maximum oblique shock angle
 - no simple reflected wave possible, get something like detached shock
 - IO: incident oblique shock
 - OW: strong curved shock, normal at wall
 - OR: weak oblique shock

Oblique Shock and Pressure BC

- If oblique shock “hits” a pressure boundary condition, reflected wave must adjust flow pressure to match boundary pressure
- Type of reflected wave will depend on whether pressure must drop or rise
 - pressure rise \Rightarrow compression: flow will “turn back on itself”
 - pressure drop \Rightarrow expansion: flow will “open up”
Reflection From Expansion on Wall

- Consider PM fan impinging on a flat wall
 - incident expansion waves tend to turn flow away the lower wall
 - can not create vacuum, flow must be turned back parallel to lower wall - velocity boundary condition
 - flow “opens up” ⇒ expansion ⇒ in this case, reflected waves are expansions (Mach waves)

- For case shown above (flow returning to original angle)
 - \(v_3 = \delta_2 + v_2 = \delta_2 + (\delta_1 + v_1) = 2\delta + v_1 \) (use to get \(M_3 \))

Non-Simple Region

- In region where incident and reflected waves interact, can not use our simple quasi-1D theory

- In this *non-simple* region, get curved waves
 - flow still isentropic

- Outside this region, our quasi-1D methods still valid
Summary of Reflected Waves

• “Reflections” from supersonic waves represent information from a boundary being transmitted into supersonic flow
 – reflections “impose” boundary condition on flow
• Generally, pressure or velocity boundary conditions
• Type of reflected wave will depend on whether compression or expansion is needed to meet boundary conditions