

Speed of Sound

- Consider adiabatic, 1-D propagation of weak (infinitessimal) pressure wave traveling through initially stationary (nonmoving), simple compressible substance
- Can think of piston given small "push"
 - Fluid to right must"find out" it needs to move
- Want to know how fast the wave propagates (wave speed=?)

Control Volume & Reference Frame

- Analyze using control volume approach
 - pick "easiest" reference frame

AE3450

Conservation Laws

- Assume steady, uniform, 1-D, inviscid, no body forces
- Mass $\dot{m}_{in} = \dot{m}_{out} = \dot{m}$ $\rho c A = (\rho + d\rho)(c - dv)A$ $\overline{dv = c \frac{d\rho}{\rho + d\rho}}$
- **Momentum** (x-dir) $A[(p+dp)-p] = \dot{m}[-(c-dv)+c]$
- **Combine** (eliminate dv) $dp = \rho c^{2} \frac{d\rho}{\rho + d\rho}$ $dp = \rho c dv$ $dp = \rho c dv$ $dp = \rho c dv$

Speed of Sound $c^{2} = \frac{dp}{d\rho} \left(1 + \frac{d\rho}{\rho} \right)$

- For *weak* wave
 - wave speed \equiv sound speed, **a**
 - $d\rho/\rho \ll 1$
 - already assumed reversible and adiabatic

 \Rightarrow **isentropic**

$$c^{2} = \frac{a^{2}}{\partial \rho} = \frac{\partial p}{\partial \rho}$$
(VI.1)
speed of sound

- Derivation valid for all <u>simple compressible substances</u>
- For incompressible substance, $d\rho \rightarrow 0$ and $a \rightarrow \infty$

Sound Speed Derivation -4

• Ideal gas equation of state, $p/\rho = RT$

(VI.2)
$$a = \sqrt{\gamma RT}$$

Calorically perfect gas *NOT* assumed, only equilibrium

AE34.50

Sound Speed for Ideal Gases (con't)

 $a = \sqrt{\gamma RT}$

- γ↑:a↑
- **MW** \uparrow : **a** \downarrow (**R** \downarrow)
- **T** ↑: **a** ↑

Substance	a (m/s) @ 15°C (60°F)
H ₂ (gas)	1294 (=4245 ft/s)
Air (gas)	340 (=1120 ft/s)
Water (liquid)	1490
Ice (solid)	3200
Aluminum (solid)	5150

• For air at "moderate" temperatures (γ =1.4)

$$- a(ft/s) = 49\sqrt{T(R)}$$
$$- a(m/s) = 20\sqrt{T(K)}$$

Sound Speed Derivation -6