Stagnation Properties and Mach Number

• Rewrite stagnation properties in terms of Mach number for thermally and calorically perfect gases

 Stagnation Temperature
 - from energy conservation:
 - no work but flow work and adiabatic
 \[T_o = T + \frac{1}{c_p} \left(\frac{1}{2} v^2 - \frac{\gamma-1}{2} \frac{v^2}{\gamma R} \right) \]
 \[\frac{T_o}{T} = 1 + \frac{\gamma-1}{2} \frac{v^2}{\gamma R T} \]
 \[\frac{T_o}{T} = 1 + \frac{\gamma-1}{2} M^2 \quad (VI.6) \]
 - \(T_o \) (and \(h_o \)) constant for adiabatic flow

 Stagnation Pressure
 - from entropy conservation:
 - reversible and adiabatic
 \[p_o = \frac{(T_o/T)^{\gamma-1}}{M^2} \quad \text{from state eq. for isentropic process} \]
 \[p_o = \left(\frac{T_o}{T} \right)^{\gamma-1} \] (VI.7)
 - \(p_o \) (and \(s_o \)) constant if also reversible

Compressible \(p_o \) and Bernoulli Equation

• Incompressible flow, **Bernoulli eqn.** also gives a stagnation pressure (static + dynamic pressure)

 \[p_o = p + \frac{1}{2} p v^2 \]

• Expand compressible \(p_o \) in **Taylor series**

 \[(1 + x)^n = 1 + nx + \frac{n(n-1)}{2} x^2 + \ldots \]

 \[\frac{p_o}{p} = \left(1 + \frac{\gamma-1}{2} M^2 \right)^{\gamma-1} = 1 + \frac{\gamma-1}{2} \frac{M^2}{\gamma-1} \left(\frac{1}{2} M^2 \right)^2 + \ldots \]

 \[\frac{p_o}{p} = 1 + \frac{\gamma-1}{2} M^2 + \frac{\gamma}{2} \left(\frac{M^2}{2} \right)^2 + \ldots = 1 + \frac{\rho v^2}{2} + \frac{\rho v^2 M^2}{8} + \ldots \]

 \[\rho_o = \rho + \frac{1}{2} \rho v^2 + \frac{1}{2} \rho v^2 \frac{M^2}{4} + \ldots \]

 Bernoulli higher terms negligible for small \(M \) (<0.3) \[0.3^{0.5} \approx 0.0225 \]
Stagnation Density and Tables

Stagnation Density
- from T_o, p_o and ideal gas law ($\rho = p/RT$)
- ρ_o constant for isentropic flow

\[
\frac{\rho_o}{\rho} = \left(\frac{T_o}{T}\right)^{\gamma-1}
\]

(IV.8)

Tables
- T_o/T and p_o/p tabulated in text (John) as function of M
 - listed as T_t/T and p_t/p (t for total T and total p)
- $\gamma=5/3$ (Table A.3): atoms (Ar, He, …) at “not too high” T
- $\gamma=1.4$ (Table A.1): diatomics (N$_2$, O$_2$, …) at “moderate” T
- $\gamma=1.3$ (Table A.2): more atoms or higher T
 - make your own?

Stagnation versus Static Properties

Static Properties
- represent the properties you would measure if you were moving with the flow (at the local flow velocity)
- always defined in the flow’s reference frame

Stagnation Properties
- always defined by conditions at a point
- represent the (static) properties you’d measure if you first brought the fluid at that point to a stop (isentropically) with respect to a chosen observer
- depends on observer’s reference frame
Stagnation Properties: Example

- **Supersonic** projectile (M=2) flying through still air
- **Static** conditions: $T_{\infty}=250\text{ K}$, $p_{\infty}=0.003\text{ atm}$

\[
T_{\infty}=250\text{K}
\]
\[
p_{\infty}=0.003\text{atm}
\]

- **Find:**
 1. T_o at A (T_{oA}) relative to observer on projectile
 2. T_{oD} (same observer) $<$, $>$, $=$ T_{oA}?
 3. p_{oB} (same observer)
 4. p_{oC} (same observer) $<$, $>$, $=$ p_{oB}?

Stagnation Properties: Example (con’t)
Stagnation Properties: Example 2

• Projectile flying through still air at 170 m/s
• Static conditions: $T_\infty = 288$ K, $p_\infty = 1$ atm
• Nose of projectile = point B
• Find:
 1. p_{oA} (relative to observer on projectile)
 2. p_B
 3. T_B
• Hint, use $a = \sqrt{\gamma RT}$