

Supersonic Windtunnels

- For supersonic wind tunnels, closed circuit tunnel requires less power to operate then open tunnels
 - do not have to accelerate flow as much

- Use two CD nozzles (really nozzle and diffuser)
 - need subsonic flow (compressors)
 - less p_o loss than using shock to get subsonic flow

Starting Problem Windtunnels -1

Starting Problem

p_o

M < 1

Test Section

- What happens during tunnel startup
 - no initial velocity
 - no initial velocity
 pressure uniform throughout tunnel
 - start tunnel by changing p_0/p_b using compressor
- As raise p_o/p_b , start with subsonic flow everywhere

- eventually reach M=1 at 1st throat (if $A_{t1} \leq A_{t2}$)

Starting Problem Windtunnels -2

Starting Shock

M<1

- Further increase in p_o/p_b
 - normal shock in diverging section of "nozzle"
- Can $A_{t2} = A_{t1}$?
 - A* increase across shock $(A_2^*/A_1^* \sim p_{o1}/p_{o2})$
 - to get same mass flowrate through 2nd throat, A_{t2}>A_{t1}
- How big does A_{t2} have to be? ⁰¹/₁
 biggest p_o loss for strongest shock
 ⇒ shock in test section

Swallowing Shock

- So raise p_o/p_b until shock enters test section
 - M in test section = M_2 after shock
- To have shock "disappear," must pass through 2nd throat

AE3451

- $A_{t2} = A_2^* @M_2$ after shock at M_{test}
- increase p_o/p_b slightly above previous case
- shock leaves test section, enters "diffuser"
- A_2^* drops (M \downarrow); shock keeps going; **shock swallowed**

Operating Conditions

_

M < 1

- Want to run tunnel with **lowest power** requirements
 - lowest p_o loss
 - operate with weakest shock possible

• Fixed diffuser throat area

- weakest shock (M lowest) when it is at diffuser throat
- more stable operation (for p_o/p_b variations) if shock just downstream of throat
- Variable diffuser throat area
 - lowest p_o loss for no shock (M=1)
 - reduce A_{t2} to A_{t1} (stability, $A_{t2} = A_{t1} + \Delta$)

>1

>1

M>1

 $M_{design} > 1$

Example: Windtunnel Design

• Given: Supersonic windtunnel designed to run on N₂ (nitrogen) and operate at M_{test}=3, 1 m² test section

• Find:

- 1. Minimum diffuser throat area to start tunnel
 - i.e., get supersonic flow in test section
- 2. Maximum p_o loss during startup
- 3. Minimum p_o loss during operation for fixed area diffuser
- **Assume:** TPG/CPG with γ =1.4

