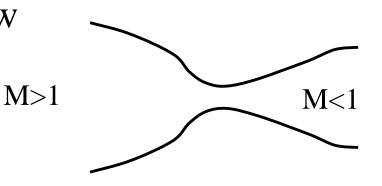


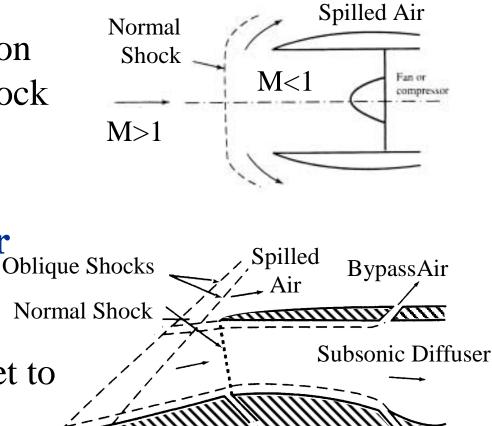
Supersonic (Engine) Inlets


- For air-breathing engines on supersonic vehicles, usually want to slow flow down to subsonic speeds inside engine
 - need diffuser (M>1 \rightarrow M<1) for engine inlet
 - exception: supersonic combustion (e.g., SCRAM jets)
- Goal
 - lowest p_o loss (highest thrust)
 - given flight M
 - mass flow rate requirement (thrust)
 - stable operation (nothing drastic for small changes in flight conditions)

CD Inlet

- Can get close to isentropic flow
 - lowest potential p_o loss
 - starting problem
 (like supersonic wind tunnel, have to swallow shock)

- most cases requires variable area throat (heavy, complex)
- stability problem: if "shock" leaves throat, can exit engine lowering mass flow (higher A_2^*)
- Not typically used


Shock Inlets

• Normal shock diffuser

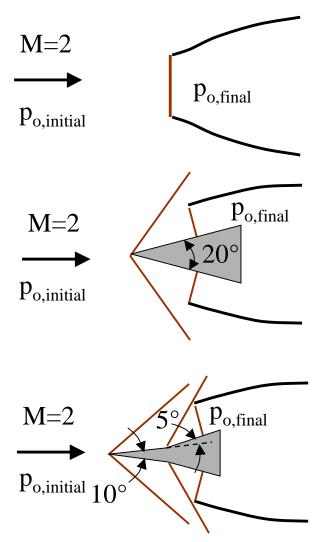
- simple, diverging section preceded by normal shock
- highest p_o loss (strong shock)

Oblique Shock Diffuser

- oblique shock(s)
 followed by normal
 shock at (or inside) inlet to
 subsonic diffuser
- lower p_o loss
- works for range of M

Bleed Air

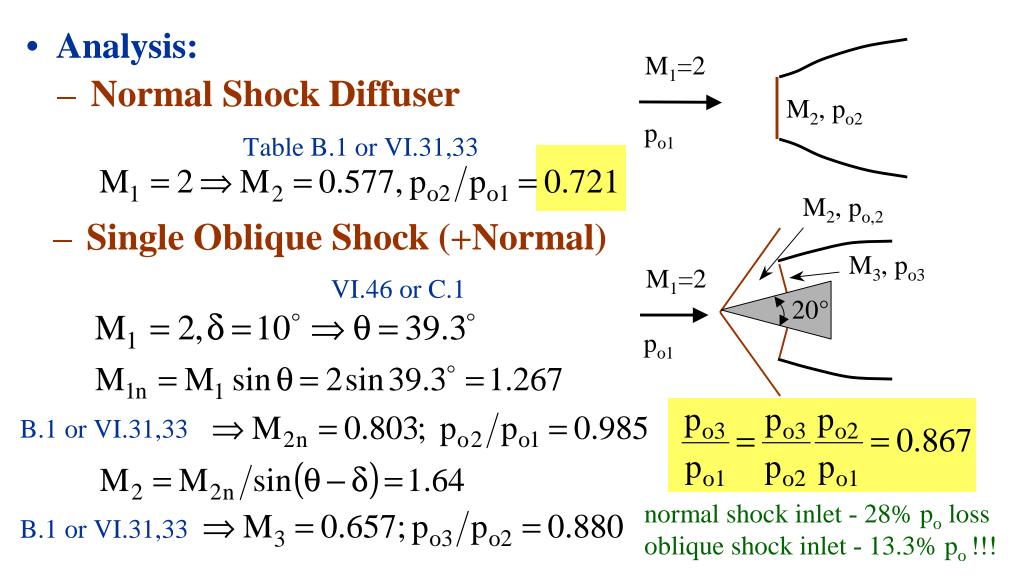
Supersonic Inlets - Oblique Shocks -3

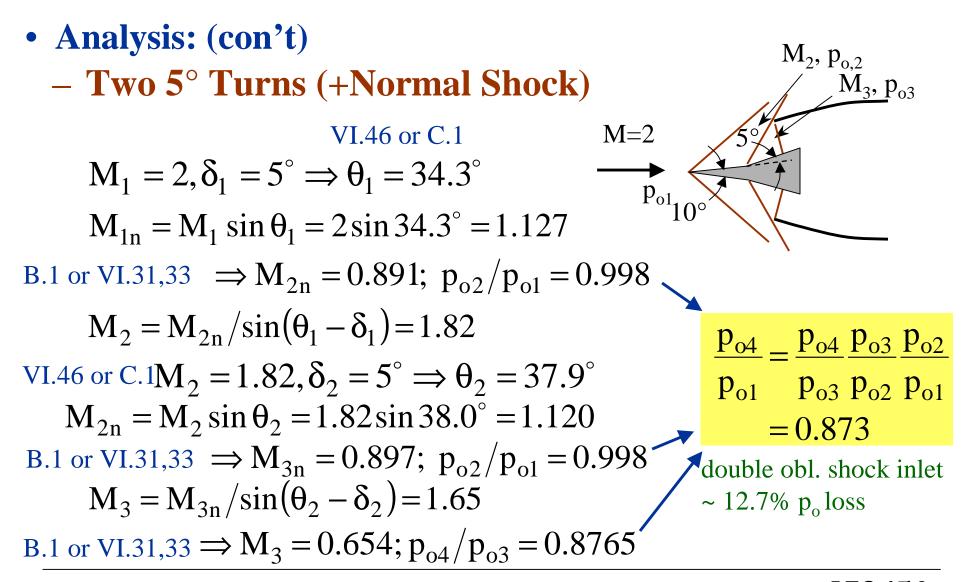

Example: Normal v. Oblique Diffusers

• Given: You need to pick a diffuser for Mach 2 flight conditions. Your choices are a normal shock diffuser and 2 different oblique shock diffusers

• Find:

Stagnation pressure loss for each $(p_{o,final}/p_{o,initial})$


Assume: air is TPG/CPG with γ=1.4, steady, adiabatic, no work, inviscid except for shock,....


Solution: Normal v. Oblique Diffusers

AE3450

Solution: Normal v. Oblique Diffusers

Supersonic Inlets - Oblique Shocks -6

Double Oblique Inlet - Advantages

- So for M=2, same total turning angle (10°)
 - two oblique shocks slightly better than one (12.7% v. 13.3% $p_o loss$)
 - significant improvement over normal shock alone (28% p_o loss)
- Oblique shock diffuser with two 10° turns (total δ of 20°) even better
 - only 4.3% p_o loss (solution shown on next slide)
 - so larger overall deflection can give better p_0
- Stagnation pressure advantages of using multiple oblique shocks increase with higher M

Double Oblique Shock Diffuser

• Two 10° Turns (+Normal Shock)

 $M_{2}, p_{0,2}$ M_{3}, p_{03} from previous results for 10° turn $M_1 = 2, \delta = 10^\circ \Rightarrow \theta_1 = 34.3^\circ$ M=2 $M_2 = 1.64; p_{02}/p_{01} = 0.985$ p₀₁20° VI.46 or C.1 M₂ = 1.64, $\delta_2 = 10^\circ \Rightarrow \theta_2 = 49.4^\circ$ $M_{2n} = M_2 \sin \theta_2 = 1.64 \sin 49.4^\circ = 1.245$ B.1 or VI.31,33 \Rightarrow M_{3n} = 0.815; $p_{02}/p_{01} = 0.988$ $\underline{p_{o4}} \ \underline{p_{o4}} \ \underline{p_{o4}} \ \underline{p_{o3}} \ \underline{p_{o2}}$ $M_3 = M_{3n} / \sin(\theta_2 - \delta_2) = 1.28$ p_{o1} p_{o3} p_{o2} p_{o1} = 0.957

B.1 or VI.31,33 \Rightarrow M₃ = 0.796; $p_{o4}/p_{o3} = 0.983$

Supersonic Inlets - Oblique Shocks -8

Double Oblique Inlet - Disadvantages

- Flow separation
 - since p increases across oblique shocks, the flow sees adverse p gradient
 - so more or bigger oblique shocks
 (or longer external ramp), Bleed Air

Boundary

Layer

Oblique Shocks

Normal Shock

the greater the chance the boundary layer will separate \Rightarrow major change in flowfield, large losses (p_o and mass flowrate)

Internal Turn Angle

- larger total external turn angle showed less p_o loss
- larger external flow turning requires larger inlet
- also requires larger internal flow turning to get flow back to horizontal

, Spilled

BypassAir

Subsonic Diffuser