

Under/Overexpanded Nozzles A_e

- Recall previous analysis of CD nozzles, e.g., as back pressure is reduced
- Have looked at range of p_b that produce
 - *isentropic* solutions or
 - shocks in nozzle
- What happens when
 - $p_b < p_{es,sup}(U)$

Underexpanded Nozzles

- Start with $p_b < p_{es,sup}$
 - underexpanded case
 - p_e>p_b (not enough expansion has occurred)
- So boundary condition at exit requires a supersonic expansion process
 - \Rightarrow (2-d) Prandtl-Meyer flow
 - flow turns, pressure drops to back pressure
 - but flow must not cross centerline (symmetry line; like a wall)

AE3450

Centerline Boundary Condition

- Centerline
 - flow along centerline must be parallel to centerline

- to get flow to turn inward again requires another
 PM expansion
- but second expansion means pressure in region 3 drops below back pressure $(p_3 < p_2 = p_b)$
- so now we will need to do something to match our pressure boundary condition at the edge of the jet

p_b

Jet Boundary Condition

- Jet boundary
 - along "edge" of jet must satisfy pressure b.c.

p_b

AE3450

- to match pressure, p must rise \Rightarrow compression
- can get PM compression waves
- combine to form oblique shocks, turn flow inward
- centerline (velocity) boundary condition requires reflected compression waves
- now pressure exceeds surrounding pressure $(p_5>p_b)$, way we started, so process/cycle repeats itself

- For p_e>p_b, nozzle produces a jet flow consisting of regions of *decreasing* and *increasing* p (or density)
 - inviscid flow (ideal), process would continue endlessly
 - viscous case (real), viscous losses and turbulent mixing with surroundings causes wave pattern to decay after small number of cycles

Overexpanded Nozzles

- $p_{es,sup} > p_b > p_{e,sh}$
 - overexpanded case
 - too much expansion has occurred

- So boundary condition at exit requires a supersonic compression process
 - \Rightarrow oblique shock (2-d)
 - flow turns, pressure rises to back pressure
 - flow must not cross centerline, so get reflected shocks
 - then expansion to match p, etc.

AE3450

- For p_e<p_b, nozzle produces jet flow consisting of regions of *increasing* and *decreasing* pressure (or density)
 - same pattern as for underexpanded case, just "out-ofphase" (compressions first, then expansions for overexpanded vs. expansions then compressions for underexpanded)

Mach (Shock) Diamonds

- Regions of high pressure, also have high density (and temperature)
 - these hot, dense gases emit light (radiation)

SR-71 at takeoff

AE3450