Losses & Real Effects in Nozzles

- Flow divergence
- Nonuniformity
- p_o loss due to heat addition
- Viscous effects
 - boundary layers-drag
 - boundary layer-shock interactions
- Heat losses
- Nozzle erosion (throat)
- Transients
- Multiphase flow
- Real gas properties
- Nonequilibrium flow

Small Combustion Chamber

- Combustion chamber area ratio
 - $\varepsilon_{cc} \equiv \frac{A_{cc}}{A_t}$
- If $\varepsilon_{cc} < 3-4$ then Mach number in combustion chamber too high and can result in significant p_o loss (Rayleigh flow)
 - ideal, constant area
 - e.g., for $\gamma=1.2$, $M=0.5$ pressure loss is $~15\%$ of temperature increase
- Lower p_o means lower I_{sp} and less m
Boundary Layers

- Flow near wall slower than freestream
 - also thermal b.l.
- **Displacement thickness** δ_t
 - one effect is less area available to freestream
 - e.g., $A_{\text{effective}} < A_{\text{geom}} \Rightarrow \dot{m}$ drop
 - can estimate from choked nozzle discharge coefficient

Displacement Thickness Estimate

- Choked nozzle discharge coefficient

\[
C_D = \frac{\dot{m}_{\text{actual}}}{\dot{m}_{\text{ideal}}} \approx \frac{A_{\text{effect}}}{A_t} = \left(\frac{R_t - \delta_t}{R_t} \right)^2
\]

for $\delta_t/R_t \ll 1$

\[
C_D \approx \frac{R_t^2 - 2 R_t \delta_t}{R_t^2}
\]

\[
\frac{\delta_t}{R_t} \approx 1 - C_D \frac{1}{2}
\]

Tang and Fenn, AIAA J 16, 1978, p. 41

\[
C_D = 1 - \left(\frac{y+1}{2} \right)^{3/4} \left[3.266 - \frac{2.128}{y+1} \right] Re^{\gamma/2} + 0.9428 \frac{(y-1)(y+2)}{(y+1)^{1/2}} Re'^{-1}
\]
Displacement Thickness Example

- Typical values
 - H_2/O_2 products at 1000 psi, 2000 K (3140 F)
 - $\nu \approx 6-7 \times 10^{-6} \text{ m}^2/\text{s}$, $\gamma \approx 1.2$, $R_t/R_1 \approx \mathcal{O}(1)$, $R_t \approx 3''$
 - $Re' \approx \mathcal{O}(10^7)$

- C_D
 - small mass flowrate change

- $\delta < 0.2\% R_t$
 - even if $Re' \approx 20$
 - ρ, R_t, \ldots
 - \Rightarrow thin B.L. at throat

Boundary Layers – Viscous Drag

- Viscous drag at walls
 - lowers u (decreases p_o)

- usually small effect on axial thrust unless very long nozzle
 - (usually $\tau \ll p$)

- result shown for truncated bell nozzle
 - $< 1-1.5\%$ loss in τ, I_{sp}
• Can lead to unsteadiness and flow separation
 – p_a information can propagate through subsonic b.l.
 – shock-induced b.l. separation

• Can improve c_T for overexpanded bell nozzles by increasing pressure on nozzle walls
Heat Losses and Erosion

- Heat losses from nozzle will tend to lower u_e, I_{sp}
 - less enthalpy available for conversion to kinetic energy

- Erosion (thermal and chemical) most significant near throat
 - highest temperature, harder to cool
 - will increase m with time, also reduces ε

$u_e \propto \sqrt{h_e - h_i}$

Transient, Unsteady Flow

- Significant transients ($dl/dt \neq 0$) tend to lower thrust of nozzle compared to steady value
 - unsteady pressure and mass flow rate

- Can occur during
 - start up, shut down
 - thruster pulsing
 - combustion instabilities in c.c.
Multiphase Flow

- Flow in nozzle includes condensed phases (liquid or solid) along with gas
 - \(\text{Al}_2\text{O}_3 \) in solid propellants, soot for HC fuels
 - condensation at low \(T \) for some propellants
- Condensed phases do not provide expansion (their density is \(\sim \)constant)
 - lowers \(I_{sp} \) vs same mass of gas
- Larger loss if
 - volume fraction of particles \(\uparrow \)
 - size of particles \(\uparrow \)
- But...can increase \(m \)
 1. particles lag gas, drag on gas
 2. slower to give up their thermal energy