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Conditions for Equilibrium

• For isolated system (fixed mass, no energy 

exchange with environment

 E,V constant, we know(?)

• In terms of the Gibbs Eq’n.

(which holds if IN equil.)
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Equilibrium Condition for Fixed T,p

• We don’t usually work with isolated systems

– more common to ask, what is an 

equilibrium composition at a given T and p

(for example, constant T, p process)
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Finding Minimum G

• For a mixture of species, we have

• Solution method #1

– use minimization techniques to find ni that give 

minimum mixture G (for given set of species)

• e.g., using method of Lagrange Multipliers

– “best” (fast, robust) equilibrium software use this 

approach

– hard to do “by hand”
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Minimizing G – Kp Approach

• Solution Method #2

– break up gi

– but state relation
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Equilibrium Constant Method

• Consider mixture of CO2, CO, O2 and O 
at known T and p

• To find the composition that produces the minimum 
Gibbs free energy, we can imagine 2 
possible “composition states”
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Equilibrium Constant Method

• From previous result

– but d can’t be zero
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Equilibrium Constant

• Defining the Gibbs free energy of the “reaction” 

– we then have

• Kp is function of temperature only 

– essentially thermodynamic property
of a (chemical) system

– often drop po (usually 1 atm or bar)
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Van’t Hoff’s Relation

• Taking derivative of Kp with T can show

– where Ho
R is the “heat of the reaction” 

(enthalpy difference between the RHS and 

LHS of the “reaction” at the given T)

• Kp increases with T for endothermic rxns. 

(chemical energy of RHS > LHS)

• Kp decreases with T for exothermic rxns.
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1

Calculating Kp

• Recall

– so just need to know thermodynamic 
properties of each species

• Alternate approach

– since any reaction can be made by summing 
up a set of formation reactions, can show
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Example: Previous Rocket Problem

• Before we assumed
products only
CO2, H2O, O2 

and found composition 
from atom balances

• Was this assumption poor?

– e.g., how much O, OH, H2,… might be 
present?

• To find out, we can 

– solve full equilibrium composition problem

– or assume we were close and check
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Example: Previous Rocket Problem

• How can we 

estimate how much

OH if we say we know

how much of the major

products?

– consider following “thermodynamic state 
relation”
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Example: Previous Rocket Problem

• How can we 

estimate how much

OH if we say we know

how much of the major

products?
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Example: Previous Rocket Problem

• What if exit temp.

increased to 2000K?
m O2
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m prod

m CH4

lossQ

5.2

1

5

1

2

4

2

4 
O

CH

O

CH

n

n

m

m





5.35.0

5.32

5.31

2

2

2







O

OH

CO









Raising temperature increased OH 

and other minor species!    Why?
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Example: Previous Rocket Problem

• What if exit pressure

decreased to 0.1 bar 

(but original T)?
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Full Problem: CH4/O2Combustor

• Given:

– Gaseous 

methane and 

oxygen entering adiabatic

combustor at 298 K, 10 bar

– Mass flowrate ratio of oxygen is 3 that 

for methane

• Find:

– both exit temperature AND composition

m O2

T, 10 bar
m prod, 

i

m CH4

298K, 10 bar
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Full Problem: CH4/O2Combustor

• Solution:

– Energy Equation (adiabatic, no work)

m O2

T, 10 bar
m prod, 

m CH4

298K, 10 bar i
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Full Problem: CH4/O2Combustor

• Solution:

– recall stoichiometric 
mixture ratio is ½CH4:O2

– now we have excess fuel (rich) reactant mixture, no 
excess O2 and unburned fuel does not stay CH4 (not at 
high temperatures)

• rich products might include: H2O, CO2, CO, H2, H, OH, O,…

– need to find: T, H2O, CO2
, CO, H2

, H, OH , O

– using: energy conservation,
atom balances, 
and Kp equations (2nd Law)

m O2

T, 10 bar
m prod, 

m CH4

298K, 10 bar i

How 

many?
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Full Problem: CH4/O2Combustor

• Solution:

– atom balances

m O2

T, 10 bar
m prod, 

m CH4

298K, 10 bar i
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Full Problem: CH4/O2Combustor

• Solution:

– Kp eqns

• many choices; 
must include all and be independent

m O2

T, 10 bar
m prod, 

m CH4

298K, 10 bar i

H2O, CO2, CO,

H2, H, OH, O

5.1

1

2

4 
O

CH

n

n

8 eqn’s, 8 unknowns  solve!!
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Full Problem: CH4/O2Combustor

• Solution:

– result m O2

T, 10 bar
m prod, 

m CH4

298K, 10 bar i

H2O, CO2, CO,

H2, H, OH, O

5.1

1

2

4 
O

CH

n

n

None of these species are “negligible” at these conditions

T (K) H2O CO2
CO H2

OH H O

3352 43.6% 9.58% 21.3% 12.3% 7.05% 4.60% 1.53%

T (K) H2O CO2
CO H2

OH H O

2796 38.0% 9.16% 20.2% 12.2% 7.93% 8.90% 3.57%

0.1 bar

Primarily, water dissociated to make H and O




