

Combustor Calculations

- Peform adiabatic flame temperature calculation with full equilibrium products
 - pressure = chamber pressure
 - total enthalpy unchanged

Example Method – Gaseq

Isentropic Expansion

- Constant γ is a very poor assumption for high temperature rocket product gases
 - can't use $p/p_o = (T/T_o)^{\gamma/\gamma-1}$
 - even worse assumption if gas is reacting
- Can still calculate isentropic nozzle expansion for two cases
 - flow stays in equilibrium through nozzle (shifting equil.) h
 - flow is frozen composition can not change
 - find h (and thusu) that matches given p and s

Example Method – Gaseq

Example – Frozen Chemistry

Example – Shifting Equilibrium

