Combustor Calculations

- Perform **adiabatic flame temperature** calculation with full equilibrium products
 - pressure = chamber pressure
 - total enthalpy unchanged
Example Method – Gaseq

\[\frac{m_{O_2}}{m_{H_2}} = \frac{(0.2 \times 32)}{(0.8 \times 2)} = 4 \]
Isentropic Expansion

- Constant γ is a very poor assumption for high temperature rocket product gases
 - can’t use $p/p_o=(T/T_o)^{\gamma/\gamma-1}$
 - even worse assumption if gas is reacting
- Can still calculate isentropic nozzle expansion for two cases
 - flow stays in equilibrium through nozzle (shifting equil.) h
 - flow is frozen - composition can not change
 - find h (and thus u) that matches given p and s
Example Method – Gaseq

Want to examine expansion of products
Example – Frozen Chemistry

- Set p_e for nozzle expansion

\[T_e \]

\[\gamma_e \]

\[MW_e \]

\[h_0 \]

\[h_e \]
Example – Shifting Equilibrium

- Exit composition

\[T_e \]

\[\gamma_e \]

\[MW_e \]

\[h_o \]

\[h_e \]