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Rocket Propulsion Basics

Ideal Nozzles

Seitzman Ideal Nozzles-2

Copyright © 2012, 2017, 2018  by Jerry M. Seitzman. All rights reserved AE6450 Rocket Propulsion

Analysis Goal
• Determine performance (, Isp or  c, c*) 

of rocket nozzle based on

– inflow properties
• To, po

– exit boundary conditions 
• pa

– nozzle geometry/design
• Aexit/Athroat, Athroat
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Idealizing Assumptions

1. working fluid is homogeneous gas 
(composition)

2. thermally and calorically perfect

3. adiabatic (negl.: wall heat transfer 
and radiation; )

4. reversible flow (negl.: boundary layers,
viscous effects, shocks)

5. uniform properties in direction normal 
to flow

6. quasi 1-d flow (only axial velocities)

7. steady flow

few %

some shocks, b.l.

depends on 

length

depends on duration, combustion instabilities
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Analysis
• Consider nozzle 

control volume

• Mass conservation

• Energy Conservation
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Exhaust Velocity

• So

• How to find Te?

– use 2nd Law

 eoe hhu  2

 eop TTc  2
tpg, cpg

“knowns”
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Temperature, Pressure Relations

• 2nd Law

• Using TPG state relations
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Exhaust Velocity Optimization

• Combine results

• What can be done to increase ue (and  Isp)?

– higher To (~ To
½)
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• What can be done to

increase ue (and  Isp)?

– higher To (~ To
½)

– higher po / pe

– higher cp

• lower 

• lower MW
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Exhaust Velocity Optimization
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Thrust

• Already showed static thrust and equivalent 

force for accelerating case are same

• Begin by reviewing pressure/temperature 

Mach relations (in isentropic nozzle)

– adiabatic, no work  ho (or To) = const.

– include rev.  po = const.
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property variations only function of M

need nozzle exit pressure 

and mass flowrate
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pe from Nozzle Area Relations

• What determines M variation in nozzle?
– cross-sectional area variation

• Constant mass flow rate through nozzle (steady) and 
combining isentropic (tpg/cpg) relations

– nozzle flow starts
subsonic

– nozzle converges 
to accel to M = 1 
(at throat)

– nozzle diverges to
accel to M > 1

– large Ae/At ( ) 
to achieve high M 
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• How do flow properties 
vary through nozzle?

– example for =1.26

• All static properties drop 
along nozzle

– typically rapid 
near throat

– least ?   

– most ? 

• pe  fn(po,Me)  fn(po,)

T

p

only one  will produce 

pe  pa (perfectly expanded) 

for given po

arbitrary nozzle 

profile
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Mass Flowrate

• Now that we found exit pressure,

need mass flowrate to get thrust

• From continuity

• Using (tpg + cpg) isentropic relations
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Choked Nozzle

• For fixed po and To mass flux 
at given nozzle cross-section 
controlled by f (, M)

– highest mass flux 
at throat (M will be 
closest to 1 there)

– for given At, 
maximum flowrate
when nozzle
is choked (Mt  1)
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Choked Mass Flow Rate

• So we have

– can increase with
• higher po (linearly)

• lower To  (To
½ )

• larger throat (& nozzle)  (linear with At)

• heavier molecular weight (R ½  1/MW ½)

• What does it take to choke the nozzle?

– will show later requires 
po/pa > critical value that is function of 

– for rocket nozzles, critical value not much 
bigger than 1  
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Thrust Optimization (Ideal)

• So for perfectly expanded, ideal nozzle

• What will increase thrust?

– At ?

– po ? 

– To ? 

– MW ?

–  ?
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