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Electrostatic Propulsion

Ion Engines (Ion Thrusters)

Electric Propulsion-2

Copyright © 2003-2006, 2017, 2019 by Jerry M. Seitzman. All rights reserved. AE6450 Rocket Propulsion

Electrostatic Thrusters

• Thrust provided by “static” electric field in the direction of 
the acceleration

• Propellant is often an ionized gas

– so often denoted ion thruster

• Typically operate at low pressure (near vacuum)

• Handful of different technologies

– gridded ion thruster or ion engine

• original development at NASA, 1950’s-60’s

– Hall effect thruster (HET) or Hall thruster or ungridded
ion thruster

• original development in Russia (Stationary Plasma 
Thruster, SPT), 1950’s-60’s

– electrospray (or colloidal) thruster

– ….
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Missions and Lifetime
• Satellite Station-keeping

– GEO communication satellites (including orbit raising as 
backup to chemical propulsion system)

– LEO: ESA GOCE

• Satellite orbit raising (and station-keeping)

– Boeing 702HP - XIPS ion engine

– AEHF GEO comm. satellite, BPT-4000 HET

• Lunar orbit

– ESA SMART-1 (2003) employed Hall thruster (PPS-1350-G)

• Deep space exploration

– Deep Space 1 (1998), Dawn (2007) – asteroid belt 
protoplanets

– JAXA Hayabusa (2014) - asteroid rendezvous and return

• Lifetime

– NASA Evolutionary Xenon Thruster (NEXT), 7 kW ion engine,
>43,000 hours (5 years) of continuous operation (ground test)
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Components
• Ion sources

– usually electron
bombardment
plasma

– RF discharge 
– ion contact: 

liquid metal (e.g., Cs)
flowing through hot 
porous tungsten 

– field emission: 
charged droplets/
particles

• Accelerator

• Neutralizer
– electrons added to make exhaust charge neutral
– typically thermionic emitters or hollow cathodes

Space Propulsion Analysis and Design, 

Humble, Henry and Larson, 1995

L

Accelerator

Gridded Ion Engine example
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Ionization by Electron Bombardment

1) produce seed electrons (e-)

– typically from thermionic source 

2) accelerate e- to high velocity/energy

– E field or B field approaches

– B field gyrate e-

• increased energy and frequency of 

collisions with neutrals 

3) electrons collide with neutral gas 

molecules and ionize them

– also produces majority of electrons 

used in ionization
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Hollow Cathode Ionization Chamber

Space Propulsion Analysis and Design, 

Humble, Henry and Larson, 1995
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• Electron emission from hot source with low 
work potential (s)

– filament example 
shown here

– B field accelerates
e-

– high KE 
e- ionize 
neutral
propellant 
flow and create
more e-

Sutton

Thermionic Emitter/B Field Ion. Chamber
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Accelerator: Gridded Ion Thruster
• Acceleration E field provided by electrodes 

– propellant passes through many small cells
• Grid of multiple electrodes (forms ion optics)

– 2-3 grids typical

Screen 
Grid

Accel
Grid

Decel
Grid

• screen and decel grids help 
prevent high energy ions from 
impacting accel grid (sputtering)

• decel grid reduces sputtering from 
backflow of charge-exchange  ions



5

Electric Propulsion-9

Copyright © 2003-2006, 2017, 2019 by Jerry M. Seitzman. All rights reserved. AE6450 Rocket Propulsion

Hall (Effect) Thruster

• Uses applied magnetic (B) 
field (external magnets) to 
create ionization and 
acceleration in same 
chamber

• Typically axisymmetric 
geometry 

– apply radial B field

• E field created between 
internal anode and external 
cathode

– but strongly influenced 
by plasma at open end

after Space Travel Aided by Plasma Thrusters: Past, Present and 

Future , DeFusco, Craddock, Faler, DSIAC Journal, 2017

Electron Source

Azimuthal example
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Hall (Effect) Thruster

C. Mullins, Non-invasive Hall Current 

Distribution Measurement System for 

Hall Effect Thrusters (2015) 

• Ionization

– axial E and radial B generate 
azimuthal e- acceleration/motion 
(Hall current)

– high energy e- ionize neutrals

– heavy ions have larger 
radius of gyration, so less 
deflection by B

• pick weak enough B

• Acceleration: two interpretations
– electrons largely trapped by B,

so negative plasma potential 
near exit accelerates ions

– Hall effect from electron current, 
induced E  jB

j




6

Electric Propulsion-11

Copyright © 2003-2006, 2017, 2019 by Jerry M. Seitzman. All rights reserved. AE6450 Rocket Propulsion

Electrostatic Propulsion

Ion Thruster Analysis
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Electrostatics – Recall Definitions

• V – potential or voltage
(sometimes ) (Volts)

• E – electric field (V/m, N/C)

• q – charge (C) (qe-=1.60210-19 C)

• Force,    𝐹 = 𝐸𝑞

• Potential Energy

• J – current (A, C/s)

• j – charge current density (A/m2, C/sm2 )

• nq – number density charged part. (1/m3)

• u – velocity of charged particles (m/s)

x

V

qunj q

VqqEdxFdx  

V
𝐸

𝐸 = −𝛻𝑉 = −
𝑑𝑉

𝑑𝑥
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Electrostatic Thruster Performance - ue

• Specific impulse

• Find exhaust velocity from energy 

balance per particle

• So maximum (ideal) specific impulse limited 

by voltage difference across accelerator
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Gridded Ion Thruster Performance - 

• Thrust    𝜏 =  𝑚𝑢𝑒
• Mass flow rate related to current

• Maximum thrust limited by 

achievable current density

• For gridded ion engine, 

ion current limited

by space-charge

– field from dense

ions creates “shield”

from applied E field
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Gridded Ion Thruster Performance - 

• Maximum thrust

• High  requires high V and aspect ratio

– space charge(D/L)max~1

– use many small ion beams to
get more thrust
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Electrostatic Thruster - Propellant

• Thrust performance

• For fixed Isp

• So choose propellant with high m/q

– heavy molecules
• xenon (Xe) good choice (MW=131.3) and 

noble gas, so easy to store

• Cs, Hg heavier, but storage issues

– singly ionized ions preferable

– also macro particles (colloidal thrusters)
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Electrostatic Thruster Power

• Jet power

– at maximum current for 

gridded ion thruster

• Accelerator electrical power

• Power supplied to thruster (not just accel.)
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Electrostatic Thruster Power - Losses

• Ionization losses

– energy used to create ions 
(e.g., XeXe+)

– minimum loss given by ionization 
potential (I) for atom (typically 4-20 eV, 
electron volts) times current 

• Thrust correction

– beam divergence, multiple ionization, 
sputtering (ion impacts on grid)

• Propellant utilization efficiency

• Neutralization losses

– energy to create  e-
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Nonideal Performance and Typical Values

• Nonideal performance equations

• Typical values
– ion I up to 100-300 eV/ion
–  0.8-0.95
– u 0.8-0.95
– Vneut 10-20Vs
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Example: Electron Bomb., Xe+ Gridded Thruster

• Operating conditions

– Vaccel=700 V, L=2.5 mm, 2200 holes 
(grids) each with D=2.0 mm

– MW(Xe)=131.3, I(Xe)=12.08 eV

• Determine
– , 
– ue, Isp
– mprop

– power required including only minimum 
needed for ionization and
neutralization (10 V)

..
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Solution

  2212

max
1018.6 VLD  

  gridN /1094.17005.2/21018.6 62212  

  mNgridNgrids
total

3.4/1094.12200 6

,max
 

smsmMWVue 3.131700890,13890,13 

smue 070,32 sI sp 3270

sgumm eb

41034.1  

  mmqVmuPPPP neutIeneutionjet  22

kg
kgMWm

25

27

1018.2
1066.1








Cq 1910602.1 
for singly ionized molec.

WW 17.29.68 

WP 1.71 maximum th=68.9/71.1

= 96.9% for Vion=200eV, th = 77%

assume u=1. .

. .

ion mass
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Additional Slides



12

Electric Propulsion-23

Copyright © 2003-2006, 2017, 2019 by Jerry M. Seitzman. All rights reserved. AE6450 Rocket Propulsion

Child-Langmuir Law Derivation

• Poisson’s Eqn.
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Assume 

E(0)=Eo=0
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Child-Langmuir Law Derivation
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