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Hybrid Rockets

Liquefying Solids — Enhanced Regression
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* Options

Increased heat <
transfer to solid
surface

More responsive
material
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— Increasing Regression Rate

Method

Basic Idea

Drawbacks

Add oxidizers or
exothermic
decomposing mat’ls.

Increase heat transfer by
moving flame towards
surface

* Reduced safety
* Increased p dependence

Add metal particles
(micron sized)

Increase radiative heat
transfer

* Small improvement

Add metal particles
(nano sized)

Move flame closer to
surface and increase rad.
heat transfer

* High cost
* Complex processing

Swirl injection for liquid

Increased mass flux near
surface

* Increased complexity
* Large motor scaling

Solid with low AH

evap

Lower heat transfer
needed

* Limited options
* Increased blowing
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Cyrogenlc Solid Hybrids

Work at AFRL (Edwards) in the early-mid
1990’s to examine “frozen” solids

Motivation

— more flexibility on propellant selection (H,,
O,, ...) and possibility of adding metals to
otherwise liquid propellants

— retain nonexplosive, safe-handling features
of the liquid propellants

Worked on frozen organics (e.g., pentane)
and GOx
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Example AFRL Results
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“New” Mechanism for Regression

Classical model
(Marxman, 1965)

— vaporization of solid
due to heat feedback
from flame (usually
diffusion limited)

Modification

— melting surface layer

— formation of droplets

that are entrained
into gaseous flow
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Entrai nment Mass Transfer

» Part of energy going to surface melts solid

without vaporizing it

» Loss of mass from surface (thin film) due to

entrainment given by

It layer
gas flow me
momentum flux 7~ /th|ckness o~1-1.5
o (pg 2) (ax) p-1-2
ent < n~0(1)
0 ,U| v~0(1)
liquid surface I|qU|d viscosity
tension

Karabeyoglu, Altman and Cantwell, J Prop Power 18 (2002),
and Gater and L’Ecuyer, Intl J Heat Mass Trans 13 (1970)
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» To include liquid layer effects

—include reduced heating requirement to
remove mass

— reduce “blocking/blowing” effect (some of
mass is initially denser, less of a pressure
gradient produced)

— increased surface roughness increases
convective heat transfer coefficient to
surface
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Example Results

* Pentane-GOX predictions and data comparison
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Energy Considerations
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eI Choice: Entrainment

Carbon numbers Alkanes CnH2n+2

between 25 and 45 are

| predicted to burn rapidly (parafﬁns)

Methane Pentane HDPE Polymer
(Tested) (Tested)  Paraffin Waxes PE Waxes (Tested)
c 1 S 25 45 65 80 A 14,000
v
Mw: 16 72 352 632 912 1262 200,000
(g/mol)
Cryogenic Non-cryogenic
Gas Liquid Solid Polymer

Entrainment

Paraffin waxes about same relative

advantage compared to pentane
\ _

entraiment & NONCIyo0genic
Boundary
Mw

after Cantwell AA 283, Ch. 11
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Experimental Results
+ Stanford, NASA Ames
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Comparison to Other Approaches

« To increase regression rate, the other major
approach is adding metal particles to standard
propellants (e.g., HTPB + oxidizer)

 In comparison, liquefying (paraffinic) fuels exhibit
— significantly greater increase in regression rate
— reduced efficiency and lower density specific
impulse
— reduced stiffness (without support structure)

+ Optimum tradeoff depends on application
specifics
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