Monopropellant Thrusters

- Good place to apply our basic thermodynamic analysis
- Employed for small, “low” thrust applications
 - small satellite attitude control
- Advantages
 - reliable
 - low complexity
 - safe (storage), good material compatibility
 - low contamination of vehicle due to exhaust

Basic Types

- Three primary types
 1. **Cold gas thrusters**
 - solely pressure driven
 2. **Decomposition-based**
 - exothermic heat release
 - requires catalyst
 3. **Resistojets**
 - a type of electrothermal thruster
 - +electrical energy
Basic Configuration

- **Storage**
- **Filter (F)**
 - remove particulates that could clog or damage downstream components
- **Pressure Transducer (P)**
 - for sensing and control
- **Pressure Regulator (R)**
 - allows storage at pressure higher than maximum pressure of downstream components
 - constant pressure operation
- **Valve (V)**
 - on-off control (e.g., solenoid valve)
- **Catalyst (C)**
 - used for decomposition-based propellants

Cold Gas Thrusters

- **Example layout**
 - typical for 1 feed system to supply multiple thrusters
- **Candidate gases**
 - **He**: high I_{sp} (~180 s vacuum)
 - low MW \Rightarrow high a_0 \Rightarrow high c^*
 - **N_2**: med I_{sp} (~80 s)
 - MW=28
 - **H_2**: high I_{sp} (~298 s)
 - but storage safety
 - others: Ar, CO$_2$, ...
 - low I_{sp} (high MW)

from Honse et al., AIAA 2009-5481
Example: N₂ In-Space Cold Gas Thruster

- Goals/Find
 1. Steady-state 1) \(I_{sp} \), 2) \(\tau \), 3) "burn time", 4) total impulse

- Assumptions
 1. Perfect regulator
 \(p_o = 10 \text{ atm} \) until \(p_s < 10 \text{ atm} \)
 2. Isothermal tank and regulator
 heat xfer from satellite fast enough to compensate expansion drop in temperature
 3. Thermally and calorically P.G.
 N₂: \(R = 296 \text{ J/kgK} \) and \(\gamma = 1.4 \)
 4. Adiabatic and reversible flow (isentropic) after regulator
 5. Neglect transients
 with 3+4 \(\Rightarrow \) ideal rocket

Analysis: N₂ In-Space Cold Gas Thruster

- \(I_{sp} \)

\[= 73.8 \text{s} \]
Analysis: \(\text{N}_2 \) In-Space Cold Gas Thruster

- \(\tau \)

 \[
 \tau = 8.4N = 1.9lb_f
 \]

- \(\Delta t_b \) steady
 - time until pressure in storage drops to 10bar

 \[
 \Delta t_b = 4400s = 1.2hr
 \]

- \(I_{\text{total}} \)

 \[
 I_{\text{total}} = 37.1kN_s = 8.3klb_f s
 \]

- Which values would change with throat size?

 -

- Which values would change if include \(T_o \) drop?

 -