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Pump-Fed LRE Cycles

Pressure Requirements and 

Pressure Drop Analysis
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Pressure Requirements

• Significant difference between cycles is the pump 

pressure requirement 

– for example, an open vs. a closed cycle

– higher pump

pressure

required if 

propellant 

stream passes

through turbine 

before entering

combustion 

chamber

from Humble, Chapter 5
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Example Pump Pressure Requirements
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Pressure Losses in Propellant Path

1. Storage pressure

2. Dynamic pressure loss

– static pressure drops as flow moves

3. Line losses between storage and pump

– friction losses in piping 

– pressure drops in flow restrictions 

(orifices, filters, etc.) 

4. Pump increase

5. Line losses

6. Injector presssure drop

7. Turbine pressure drop
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Pressure Modeling – “Rules of Thumb” 

• Dynamic pressure

• Line losses: piping

– various modeling approaches, e.g., friction factor

– f is function of Red, pipe material, surface finish

• find values from Moody diagrams,  empirical models
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Moody Diagram



4

Pump Fed Cycle Pressures - 7

Copyright © 2012 by Jerry M. Seitzman. All rights reserved. AE6450 Rocket Propulsion

Pressure Modeling – “Rules of Thumb” 

• Line losses: orifices

– flow restrictors, valves, etc.

– typically use discharge coefficient

– essentially ratio of actual flow rate to flow rate 
through ideal “nozzle” that produces same 
expansion

– so pressure drop given by

volumetric flowrate

orifice area
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Pressure Modeling – “Rules of Thumb” 

• Typical line losses

– feed system: ploss=10’s kPa (4-8 psi)

– regenerative cooling (of TCA): ploss~10-20% of pcc

• Injector pressure drops

– required to produce required dispersion and mixing of 

propellant, isolation, etc.

– depends on engine operational 

requirements and propellant type

• ploss~20% pcc for unthrottled engines

• ploss~30% pcc for throttled engines

• as low as ploss~5% pcc for some

pintle injectors
US Patent 6591603
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Pressure Modeling – “Rules of Thumb” 

• Turbine pressure drops

– based on required pressure ratio 

across turbine

– gas generator cycle: Prt up to ~20

• low flow rate so large expansion requirement

– staged, expander cycles: Prt ~1.3-1.7

• typically includes all of flow from one propellant stream

• Pump requirements

– pump supply

– pump inlet
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Pump Power Requirements

• Conservation equations

– assume steady flow, adiabatic

– mass: 

– energy

• State equations
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Pump Power Requirements

• Ideal pump power

– so for incompressible liquid undergoing

ideal (adiabatic, isentropic) pumping

• Pump efficiency

• Pump power
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Example Pump Characteristics
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Turbine Power Requirements

• Power output needed

– depending on shaft/gear box efficiency

• Conservation equations (steady, adiabatic)

– mass: 

– energy

• for cal. perfect gas

• Turbine efficiency

– if also reversible (so isen.)
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Power Summary

• Power requirements

– so given 
• pump flow rate 

• pump pressure rise

• pump and turbine efficiencies

– have relation between
• turbine inlet temperature

• turbine pressure ratio

• turbine flow rate
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