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Turbomachinery for LRE

Pumps
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Centrifugal Pumps

• Commonly employed in rocket engines

– high flowrate pumps can be axial

– liquid enters axially, 
leaves radially

• General Euler relation
still holds

– for no input swirl
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Velocity Change and Pump Work

• Changing ref. frame

From Hill and Peterson
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Pump Work and Pressure Rise

• Work also related to enthalpy change

• From Gibb’s eq’n (s state eqn.)

• So if isen.
(and incomp.)

• To include irrev. - use adiabatic efficiency

if isentropic
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Pump Characteristics

• Efficiency losses

– boundary layers

– stall: 2 not set by blade 
when (,) too far from 
design (design, design) 

– secondary flows…

 22

2

tan113 





p

o

U

p

 or Flow rate


o

r 


p
o

P=1, 2 constant

From Hill and Peterson

actual

P(<1), 2 const.

design 
point
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Nondimensional Parameters

• For axial turbine, we saw turbine 

characteristics often shown normalized as

– flowrate to account for 

choking effects 

– rot. speed or blade Mach number

• Similarly for pumps

(not just centrifugal)
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Specific Speed

• From dimensional analysis, can combine these to 
produce dimensionless (?) parameter with no size 
dependence

• Call this Specific Speed

– scaling: e.g., for fixed N
and head, larger thrust 
 higher Q  higher Ns
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Pump Types

• Based on required p rise (head), flowrate and RPM 
limits (max ~200-700m/s impeller tip speed)  Ns

– can choose best pump type

Adapted from Sutton

weaker steels titanium

0.18-0.37 0.37-0.73 0.73-1.1 1.1-2.2 >2.9

to be 
consistent 
with US 
ranges

Centrifugal/radial flow pumps Mixed flow pumps Axial flow pumps
7000

2.6

7000

2.6

jerrys
Rectangle
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Specific Diameter

• Already defined normalized rotational speed

• Can also combine * and * to remove N

dependence

– call this Specific Diameter
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Centrifugal Pump Sizing: Example  Contours

From Hill and Peterson

• Each point is single 

point design (ds,Ns)

• Narrow high 

efficiency region

– given ds can’t 

change Ns much 

or 

– high   high Ns

and low ds

ds

Ns

maximum efficiency 

near Ns=1
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Knighthawk Matls Lab

Cavitation Prevention

• If static p at inlet too low vs. fluid’s vapor pressure, 
then as p drops over suction side
of blades get vaporization (bubbles)

• Recall Net Pos. Suction Head

• Convert to Suction Specific Speed

• Typically

o

vapo

g

pp
NPSH in




 min NPSH gives inlet 

p to prevent cavitation
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s
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S




Ss ~ 3.7–9.1 best designs with
nearly no cavitation

~ 10–15 with controlled cav.
even up to 30

Ss,min ~1.8 H2

~1.2 RP

with modern inducer designs

low flow rates lead to 

vibrations and excessive 

heating

suction 
side

pressure 
sidevapor-

bubbles

collapsing 
bubbles

AE6450 Rocket PropulsionPumps -12

Copyright © 2010, 2019 by Jerry M. Seitzman. All rights reserved.

Cavitation Prevention

• What if we want to operate at RPM that gives NPSH 
< available head?

1. raise tank storage pressure
– weight issue

2. add inducer
– typically helical (screwlike) 

inducer to raise pressure 
before impeller

– also used on axial/mixed pumps

3. separate booster pump
– like having separate inducer on 

its own (low speed) shaft

– could require extra turbine or more gearing

losses lineheadgrav.tank HHHHavail 

from Turbocam Intl.
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Inducer Cavitation

From Hill and Peterson

Ss=3.2

Ss=11

Ss=10
pump discharge 

pressure dropping 

by few %

bubbles impacting 

impeller

large reduction in 

discharge pressure 

(“head loss”)

cavitation damage 

is larger concern 

for reusable 

turbopumps (less 

damage for short 

lifetime operation)

can successfully 

operate with more 

than 2% head loss 

due to cavitation, 

BUT

cavitation bubbles, 

but collapsing by end 

of inducer
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Inducer Development History

3.7

• Maximum 
suction 
speed 
increasing 
with 
improved 
inducers

7.3

11.0

14.6

18.3

22.0

>25



8

AE6450 Rocket PropulsionPumps -15

Copyright © 2010, 2019 by Jerry M. Seitzman. All rights reserved.

SSME Low P H2 Pump Inducer

From SuttonSs=14.3

axial flow 
impeller

inducer

LH2 is compressible

 temperature also drops 

as p reduced during flow 

acceleration

 pvap drops

 reduced cavitation

 higher pump specific 

speed or RPM for LH2
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Pump Design Example

• Consider preliminary design requirements for 

liquid oxygen pump

– fluid properties: 1150 kg/m3

– flow: 257 kg/s (0.2235 m3/s)

– inlet: 85K, 1 bar

– outlet: 120 bar (Head = 1055m)

• Constraints

– stage loading coeff. 0.4-0.7

– assume zero swirl at inlet, incompressible
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Pump Design Example

• Estimate blade speed (single-stage pump)

– pick maximum  for minimum blade speed

• Pump type

– can we use centrifugal, Ns,max ~ 0.4-0.7

– for 0.4
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Pump Design Example
• With Ns=0.4, good 

effic. for ds ~ 6.5 (~86%)

• Can make smaller by 
reducing ; small effect

• Can also increase Ns

– Ns=0.6, ds=4

(>90%??)

 12,500 rpm, 0.18m, 
U=118 m/s, 
=0.75

ds

Ns
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Qd
D

o

s 30.0
41
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

    smsmDU 13187015.022 

not too big

=0.68

too high?
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Cavitation Check

• Check to see if need booster pump or inducer

• For Ns=0.6

– WILL NEED booster pump or higher storage 
pressure (too high for inducer) 

– or will need to reduce rpm to level where we 
can use inducer (e.g., Ss<25  Ns<0.36, close 
to our 1st choice, but slightly larger pump)
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