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Solid Rocket Motors

Static Stability, Sensitivity and Axial 

Variations/Erosive Burning
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Motor Stability

• Recall mass conservation for steady 

operation (po=constant)

• Is this condition

(point) stable?

– only if n  1

– normally use

0.3<n<0.7
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Plateau and Mesa Burning

• Plateau burning

– region of weak po

dependence (n0)
of burn rate

• Mesa burning

– locally negative (n<0)

• Payoff

– enhance po stability
region

– can keep po constant even 
with changes in K (Ab)
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Temperature Sensitivity

• What happens if the initial (storage) 
temperature of the propellant changes?

• Burn rate and pressure increase
– shorter duration burn, 
– similar total impulse
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Temperature Sensitivity

• Sensitivity of burning rate to Tp

–

– with St. Robert’s Law

– empirically (e.g., strand/

Crawford burner tests)
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Temperature Sensitivity

• Sensitivity of pressure to Tp (at specific K)

–

– with St. Robert’s Law

– another reason to keep n small (<0.8)

– usually measure K in motor tests

– additionally, Tp can  flow/”slump”; Tp (+ cycling) 

 cracking (Ab, hot gas at insulation/casing); 
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Combustion Limits

• If n or po too low

– do not get stable combustion

– after ignition, propellant

soon stops burning (r0)

• At high po

– possibility of erratic, unpredictable burning 

(usually > 5000 psi)
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Axial Variations

• So far neglected variable gas properties 

along bore

• Okay if low Mach number

(M) in port, Acc >> At

• Initially, however,

Acc ~ O(At) M1

somewhere in port

• Leads to

1) erosive burning

2) axial pressure distribution

Acc At

Head

End

Aft or 

Nozzle

End
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Erosive Burning
• Compact Kinetic Energy Missile 

– HTPB/AP propellant

Internal 

Ballistics 

model based 

on burning 

rate data for 

propellant

Large enhancement in po, r

especially during beginning of burn

From B. McDonald PhD Thesis, GT (2004)
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Erosive Burning - Cause

• Variation in heat feedback 
to propellant surface along bore
leads to variations in r

• Higher M (or u)
 thinner boundary layers (T),

and higher turbulence

 more heat transfer q to surface

– happens more at aft end
(M, u increase downstream
due to mass addition) and
during early times (Acc/At near 1)

– still most of q to surface is from heat 
release of near surface flame

M,u~0

Head End Aft/Nozzle End

M,u large

q

Acc At

Can get similar erosive 

burning if flow 

accelerated by vehicle 

acceleration or spin
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Erosive Burning - Scaling

• Can approximate 
effect with additional 
term to burning rate

• Here 5-80% r increase 
with erosive burning

• Reduced effect for 
higher ro (cataylzed) 
propellant

– less dependent on 
additional heat xfer

From Sutton

r/ro

u (m/s)

eo rrr 

Fast burn propellant
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Erosive Burning: Empirical Models

• Lenoir-Robillard model (1957)

• Green (1954)
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Erosive Burning: Empirical Models (con’t)

• Kriedler (1964)

• Exponential “Law”

• These models quasi-predictive (constants 

may change with propellant and motor)

• Must know how G or M vary along port
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Axial Variations

• Even without erosive burning, we can expect 

property variations along port (i.e., axial position)

• Consider effect of mass 

addition on po(x)

• Momentum equation

(inviscid)
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Constant Area Example

• Assume port area axially uniform
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