Solid Rocket Motors

Two-Phase Flow in Nozzles

- Common for SRM to have droplets or solid particles (e.g., Al₂O₃ and soot) from propellant flowing through nozzle
 - how does 2-phase flow change T (energy), velocity (momentum) of nozzle flow
- Nozzle = expansion
- What can happen?
 - in accelerating flow, particle has inertia – lags flow velocity change
 - in cooling flow, particle not expanding – temperature drop lags due to thermal inertia
Two Phase Flow in Nozzles

- How do particles “catch up” to gas changes?
- Velocity - drag
 - \(u_p \uparrow, u_g \downarrow \)
- Temperature – heat transfer
 - \(T_p \downarrow, T_g \uparrow (\Rightarrow u_g \uparrow) \)
- Thrust effect
 \[\tau \sim \dot{m}u_e = \dot{m}_g u_{e,g} + \dot{m}_p u_{e,p} \]
 - velocity
 - overall velocity lower due to particles
 - mass flow rate
 - overall mass flow rate increased by particles

Velocity Lag - Model Approach

- Drag
 \[F_D = C_D A_f \frac{1}{2} \rho_g (\Delta u)^2 \]
 \[= m_p \frac{d u_p}{d t} \]
 \[\frac{d u_p}{d t} = \frac{3}{8} C_D \rho_g (\Delta u)^2 \frac{r_p}{\rho_p} \]
 \[m_p = \rho_p V_p = \rho_p \left(\frac{4}{3} \pi r_p^3 \right) \]
 \[A_f = \pi r_p^2 \]
- \(C_D = ? \)
 - small particles \(\Rightarrow \) laminar or Stokes flow
 - Stokes \(C_D \sim 24/\text{Re} \)
 - laminar \(C_D \sim \frac{24}{\text{Re}} \left(1 + a \text{Re}^b \right) \)
Drag Model

- For Stokes flow, need Re<~2
 \[\frac{du_p}{dt} = \frac{9 \mu_g \Delta u}{2 \rho_p r_p^2} \]
 - not dependent on gas density
 - acceleration
 - \(\propto 1 / \text{particle area} \)
 - \(\propto \text{velocity difference} \)
- For laminar flow
 - weak function of \(\rho_g \), 1/area\(^n\) (n<2), \(\Delta u^{1.2} \)

\[\Delta u \sim 10 \text{ m/s} \]
\[\rho_g \sim 1 \times 10^3 \text{ kg/m}^3 \]
\[\mu_g \sim 5 \times 10^{-3} \text{ kg/m/s} \]
\[\Rightarrow d_p < 2 - 20 \mu m \]

Particle Velocity Lag in a Nozzle

- For high temperature rocket nozzle flows
 - typical
 \[\frac{du_g}{dt} \sim O(10^7 \text{ m/s}^2) \]
 \[\frac{du_p}{dt} = \frac{9 \mu_g \Delta u}{2 \rho_p r_p^2} \]
 - Assuming Stokes flow and
 \[\rho_p \sim O(10^3 \text{ kg/m}^3), \mu_g \sim O(10^{-4} \text{ kg/m/s}) \]
 - need \(r_p < O(0.1 \mu m) \) for no velocity lag
 - so no lag for “smoke” particles
 - large particles (e.g., agglomerates) can have significant velocity lag
Temperature Lag - Model Approach

• Heat transfer (negl. radiation)

\[\dot{Q} = hA_s(T_p - T_g) \]

\[h \approx k_g \left(2 + a \text{Re}^{0.5-0.6} \text{Pr}^{0.3-0.4} \right) \]

\[\frac{dT_p}{dt} = -\frac{3k_g}{c\rho_p} \frac{\Delta T}{r_p^2} \]

– particle temperature lag scales with \(r_p^2 \)

Particle Temperature Lag in a Nozzle

• For high temperature rocket nozzles
 – typical \(dT_g/dt \sim O(1000 \text{ K} / 1 \text{ ms}) \)

\[\frac{dT_p}{dt} = -\frac{3k_g}{c\rho_p} \frac{\Delta T}{r_p^2} \]

• Assuming low Re flow and
 \(k_g \sim O(10^{-1} \text{ W/mK}), \rho_p \sim O(10^3 \text{ kg/m}^3), c \sim O(1 \text{ kJ/kgK}) \)

\[\Rightarrow 3k_g/c\rho_p \sim (1-5)\times10^{-7} \text{ m}^2/\text{s} \]

– for small temperature lag
 • for \(r_p \sim 5 \mu\text{m}, \Delta T \sim \text{few hundred K} \)
 • for \(r_p \sim 0.3 \mu\text{m}, \Delta T \sim 1 \text{ K} \)
 – smoke at same temperature as gas
Specific Impulse

- Can solve flow through nozzle using separate energy and momentum equations for gas and particles
 - include drag and heat transfer exchanges
- Limiting case example (particle size independent)
 - gas: $T_o=2780$ K, $\gamma=1.2$, $MW=25$
 - particle loading: 10% (by mass), $c\approx 2$ kJ/kgK
 - nozzle: $p_o=50$ atm, $p_e=1$ atm

<table>
<thead>
<tr>
<th>No particles</th>
<th>No u lag</th>
<th>∞ u lag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No T lag</td>
<td>∞ T lag</td>
</tr>
<tr>
<td>Isp (s)</td>
<td>236</td>
<td>228</td>
</tr>
</tbody>
</table>

results from Hill and Peterson

| Particles can’t expand | No lags – still have “loss” (3%) | T lag smaller effect | vel. lag has significant effect (9% “loss”) |