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Solid Rocket Motors

Two-Phase Flow in Nozzles
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Two Phase Flow in Nozzles

• Common for SRM to have droplets or solid 
particles (e.g., Al2O3 and soot) from propellant 
flowing through nozzle 

– how does 2-phase flow change T (energy), 
velocity (momentum) of nozzle flow

• Nozzle = expansion

• What can happen? 

– in accelerating flow, particle
has inertia – lags flow velocity change

– in cooling flow, particle not expanding –
temperature drop lags due to thermal inertia
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Two Phase Flow in Nozzles

• How do particles “catch up” to gas changes?

• Velocity - drag

– up  , ug 

• Temperature – heat transfer

– Tp  , Tg  ( ug )

• Thrust effect

– velocity
• overall velocity lower due to particles

– mass flow rate
• overall mass flow rate increased by particles
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Velocity Lag - Model Approach

• Drag

• CD  ?

– small particles  laminar or Stokes flow 

– Stokes

– laminar
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Drag Model

• For Stokes flow, need Re<~2 

– not dependent on gas density

– acceleration

•  1 / particle area

•  velocity difference

• For laminar flow

– weak function of g, 1/arean (n<2), u1.x
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Particle Velocity Lag in a Nozzle

• For high temperature rocket nozzle flows 

– typical 

dug/dt ~ O(107 m/s2)

• Assuming  Stokes flow and 

– need rp < O(0.1 m) for no velocity lag

• so no lag for “smoke” particles 

• large particles (e.g., agglomerates) can have 

significant velocity lag
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Temperature Lag - Model Approach

• Heat transfer (negl. radiation)

– particle temperature lag scales with rp
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Particle Temperature Lag in a Nozzle

• For high temperature rocket nozzles 

– typical dTg/dt ~ O(1000 K / 1 ms)

• Assuming  low Re flow and 

– for small temperature lag

• for rp ~ 5 m, T ~ few hundred K 

• for rp ~ 0.3 m, T ~ 1 K  

– smoke at same temperature as gas
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No particles No u lag  u lag

No T lag  T lag No T lag  T lag

Isp (s) 236

Specific Impulse

• Can solve flow through nozzle using separate energy 

and momentum equations for gas and particles

– include drag and heat transfer exchanges

• Limiting case example (particle size independent)

– gas: To=2780 K, =1.2, MW=25

– particle loading: 10% (by mass), c~2 kJ/kgK

– nozzle: po=50 atm, pe=1 atm

No particles No u lag  u lag

No T lag  T lag No T lag  T lag

Isp (s) 236 228 224 216 213

vel. lag has significant 

effect (9% “loss”)

T lag 

smaller

effect

No lags –

still have 

“loss” (3%)

Particles 

can’t expand

results from Hill 

and Peterson


