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Rocket Propulsion

Reacting Flow Issues
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• c* (To/MW)1/2

• Must include effect of product dissociation for 

rocket chamber calculations

– will decrease To and reduce MW

• Peform adiabatic flame temperature

calculation with full equilibrium products

– pressure = chamber pressure

– total enthalpy unchanged

Combustor Calculations
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Equivalence Ratio

• In rockets, common to present initial conditions in terms 
of O/F ratio (oxidizer to fuel) =1/f fuel/oxidizer

– usually mass oxidizer/mass fuel

– or moles fuel/moles oxidizer

• Equivalence ratio used by combustion engineers
 = factual/fstoichiometric

–  = 1; stoichiometric

• just enough oxidizer to
completely consume fuel

–  < 1; fuel lean (excess ox.)

–  > 1; fuel rich (excess fuel)

H2 Example

OHOH 222 ______ 

LHS RHS
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Stoichiometric Mixture:

Hydrocarbon-O2 Example

• Determine major products

(stable, low energy)
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• Required (stoich.) amount of oxidizer

– atom balances

(mass conservation)

• In terms of  
2
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Adiabatic Flame Temperature (Tad)

• Equilibrium temperature that 

would be achieved if

– reactants converted to 

equilibrium products 

– without heat addition/loss or 

work

– for constant pressure

– steady

Reactants Products

(1) (2)

21 hmhm  

21 hh 
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Example Method – Gaseq

Tad

MWproducts

products
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• Tad peaks 

near stoich-

iometric

mixture

• Peak in c* 

(and Isp) for 

rich mixture

• Why?
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Pressure Effects

• Raise p, 
higher Tad

(less dis-
sociation)

• Also 
increases 
MW

• Slightly 
higher c*

• Isp higher for 
same pe
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• What happens to chemical composition in 

nozzle?

• As velocity increases

– temperature and pressure decrease

– will lead to change in composition

Nozzle Chemistry

Rocket Thermochemistry-11

Copyright © 2004,2006, 2017 by Jerry M. Seitzman. All rights reserved. AE6450 Rocket Propulsion

• Constant  is a very poor assumption for high 
temperature rocket product gases

– can’t use p/po=(T/To)
/-1

– even worse assumption if 
gas is reacting

• Can still calculate isentropic nozzle 
expansion for two cases

– flow stays in equilibrium through 
nozzle (shifting equil.)

– flow is frozen – composition can
not change

– find h that matches given p and s

– from energy conserv.

Isentropic Expansion

h

s

pe

po

p*

pe
p2=po p*

 eoe hhu  2
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Example Method – Gaseq

Want to examine 

expansion of 

products
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Example – Frozen Chemistry

• Set pe for 

nozzle 

expansion

Te

MWe

e

he
ho
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Example – Shifting Equilibrium

MWe

e

Te • Exit 

composition

he
ho
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Frozen and Shifting Equilibrium

• Both cases 

have same 

entropy

• T drops 

faster for 

frozen flow

• ue (Isp) 

lower for 

frozen flow 0
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Shifting Equilibrium Chemistry

• As T drops, 
minor species 
recombine 
(H,OH)

• Chemical 
energy 
converted to 
thermal energy

• T does not have 
to drop as much 
to reach same p
(cp effectively 
higher)
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Area Ratio

• Frozen flow 

requires 

larger 

expansion 

ratio to 

achieve 

same pe
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Nonequilibrium Nozzle Flow

• For adiabatic nozzles, Isp will fall between the frozen 

and equilibrium limits  not isentropic! –

nonequilibrium flow

– chemistry isn’t so fast compared to nozzle 

expansion rate, so composition can’t stay in 

equilibrium, but not so slow to be frozen 

• chem vs. flow

– tends to get more frozen later in the nozzle

colder & lower p low reaction rates  chem long

AND velocity high  flow short

• Can solve nonequilibrium by

– including RATES in conservation/flow equations


