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Turbomachinery for LRE

Turbines
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Axial Turbine Analysis

• From Euler turbomachinery (conservation) 
equations need to 
understand change in 
tangential velocity to 
relate to forces on 
blades and power

• Analyze flow in a plane normal to rotational 
axis (cascade plane) to find c
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Cascade Analysis

• You may have previously analyzed 

flow over a “blade” (airfoil) 

– but in blade’s reference frame

• Here there are moving

(e.g. rotor) and stationary 

blades

– e.g., for turbine

12 nozzle (stator)

23 rotor

• Use velocity triangles to switch

between frames Mechanics and Thermodynamics of 

Propulsion, Hill and Peterson
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Velocity Triangles

• Two reference frames to use for fluid velocity

– engine’s

– blade’s

• Difference due to 
blade motion

• In 2-d (z,) “plane”

– u is in  direction

– define angles (,)
for each ref. frame
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Rotor Velocity Triangles

• Blade moves in  direction, and in 

(z,) plane, for fixed r, let  ui=U

• Also have general geometric relations

– e.g., 

• Therefore
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Single-Stage Characteristics 

(Axial Turbine)

• Goal - determine how turbine performance, e.g., 
PrT, affected by changes in operating conditions

• Start by analyzing single-stage turbine

• Rotor (23)

– Euler

– at fixed 
radial location

• Nozzle (12)

• So for stage

   2323 23 ooR hhmcucumW  


   2323 ooR hhmccUmW  


3,23,2 ohcU  

120 ooS hhW 

3,23,23,1 cUhh oo 

while no work, there is still 

torque on stationary blades
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Axial Turbine Stage

• Combining 

results

– assuming constant axial velocity
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, flow coefficient
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2 related to nozzle trailing edge angle

3 related to rotor trailing edge angle 

IF flow attached (no separation)
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High output power:

1) high flow (cz)

2) high U (rpm, radius)

3) high 2 (max <90)

4) high 2 (large rev. turn)
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Turbine Stage Pressure Ratio

• For adiabatic turbine with TPG/CPG
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• Stage pressure ratio depends on

1. = f(U= r, c 2,3)

2. blade Mach number Mblade=f(r, To1)

3. st

>1 as written

<0 for turbine

M2
blade
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Turbine Characteristics

• For given Mb, blade design, , T

• As increase flowrate through 

turbine (at fixed rpm), larger 

pressure drop (more expansion) is 

produced

– more work extracted per unit mass
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Axial Turbine Maps

• Typically presented as 
separate curves for each 
rpm (Mb)

• x-axis - replace flow 
coefficient with corrected 
mass flow rate, recall

– at high corrected mass 
flowrate, nozzle 
becomes choked

• Peak efficiency around 
design point

Mechanics and Thermodynamics of Propulsion, Hill and Peterson

oo RTpAm 

PrT

T

1/PrT
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Blade Design: Degree of Reaction

• We have TWO blade 

parameters to design

– rotor trailing edge (match 3)

– nozzle trailing edge (match 2)

• How to do this?

1.Degree of reaction, R

2.Stage exit condition 

constraint (3)

 32 tantan13,2 
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Degree of Reaction

• Recall

– allows us to distribute load (static pressure 

change) between rotor and nozzle (or stator)

– how to relate static enthalpy change to 

azimuthal velocity changes?

• KE !!

– for stationary blade, no work done

• e.g., nozzle blade 

stagerotor hhR 

KEhho  0

2v2 hho

    22 2222

12 2221  cccchh zz    222

21  cc 

if cz constant, and negligible cr
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Degree of Reaction (Turbine)

• Rotor blades??
– are “stationary” in rotor’s 

reference frame

• Reaction
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Impulse Turbine

Mechanics and Thermodynamics of Propulsion, Hill and Peterson
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• R = 0

– all the pressure change occurs across the 

nozzle, or the nozzle 

creates high KE
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Impulse Turbine

Mechanics and Thermodynamics of Propulsion, Hill and Peterson

• So for impulse turbine,
blade loading coeff.

• Relates blade loading to 
nozzle exit angle

• From previous & 
velocity triangles,
rotor angles given by
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Impulse Turbine

Mechanics and Thermodynamics of Propulsion, Hill and Peterson

• To let largest power per 
unit mass flow rate  large 2

– tends to produce high 
velocities and po losses

– practical limit, ~70-75

• Further possible constraint

– no exit swirl (c3
=0)
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50% Reaction Turbine

• R  0.5

– balanced p drop across stage

– if no exit swirl
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Rocket Turbines

• Can combine results for no exit swirl condition to show

– as reaction decreases, power per stage increases

• To minimize size/weight, rocket turbopumps often employ 
impulse or low reaction turbines

– but efficiencies typically lower (<70%) for impulse 
turbines compared to higher reaction turbines (~90%) 

• Can improve efficiency by decreasing flow coefficient (cz/U)

– for given flowrate, requires higher blade speed, RPM

– higher RPM = higher stresses = heavier, 
and larger gear ratio if geared to pump

 RUh
stageo  122
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Velocity-Compound Impulse Turbine

• Can increase stage power even more using 
velocity-compounding
• multiple nozzle/rotors in series

• Example, two-row compounded impulse turbine

– all p in 1st nozzle

– 1st rotor exits with high
swirl (so large 2 allowed)

– 2nd nozzle redirects 
flow without p

– 2nd rotor extracts more 
work and reduces swirl

– stage loading is 4x that 
of single-row impulse stage

From Sutton
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Highly-Loaded Turbine Efficiencies

• Can provide lower or improved efficiency 

improvement over single row impulse stage 

– still lower than high reaction turbines

From Hill and Peterson

0.1

From Sutton
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Turbine Inlet Temperature Limits
www.virginia.edu/ms/research/wadley/high-temp.html• Maximum inlet temp.

limited by blade stresses

• Advances

– higher T materials 
(superalloys)

– coatings (TBC)
and blade 
cooling, 
not typical for 
rockets

• Rocket turbine Tmax

historically limited to 
900-1100K with blade 
tip speeds of 400-700 m/s

– potential for increases to 1400-1500 K with better materials 

Ni superalloys

single crystal 
super alloys

1200K

1400K

1500K

1100K
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Turbine Design Example

• Consider preliminary design requirements for 
gas-generator cycle LRE turbine

– power/flow: 19.4 MW, 41.8 kg/s

– gas properties: =1.15, MW=27.7 

– inlet: 1000K, 44 bar

– outlet: ? 

• Constraints

– max tip speed 550 m/s

– assume geared so rpm not fixed by pump rpm

– assume zero swirl at exit, constant axial vel.

p

inoeo
cm

W
TT




 ,,

would be more realistic to 
constrain blade-root stress

790K
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0.1

Turbine Design Example

• Step 1: Turbine type

– estimate U/co, 
co=theoretical 
gas spouting vel.

– U/co  0.5   single impulse stage, much higher 

than 2 row compounded, less stages than 

reaction turbine

• Step 2: blade angles

– use max 2=70

  smmWhhc esoio 100022  

75.0 T
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oeoee RTp

suggests nozzle will be supersonic

2=-53.9

Power 19.4MW

Flowrate 41.8kg/s

 1.15

MW 27.7

To,in 1000K

po,in 44bar

To,exit 790K
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Turbine Design Example

• Step 3: sizing
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