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Laminar Nonpremixed Combustion: 

Laminar (Round) Jet Flames

Jerry Seitzman
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Overview

• The specific goals of this section are:

1. Extend description for laminar, nonreacting

jets to jet flames

2. Introduce concept of conserved scalars

3. Describe buoyancy effects on laminar jet 

flames

Wang et al., Proc. Comb. 

Instit. 37(2), 2019
CH4
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Laminar Jet Flames

• Reacting jet will be “similar” to nonreacting/mixing 
flow except

1. Now have source and sink terms in the species 
conservation (and energy) equations

• fuel and oxidizer will react to create products and 
convert chemical to thermal energy

2. Must add diffusion of products (and intermediates/ 
radicals) to fuel and oxidizer diffusion

3. Heat release will produce non-uniform temperature

•  = constant probably not a good assumption, will 
also lead to buoyancy effects (body force term)

• T dependent diffusivities will also vary with position
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Jet Flames: Overall Fuel/Ox. Ratio

• Previously examined fuel jet exiting into 
infinite environment

– important to recognize that is not 

always the case

• Based on total available fuel 
and oxidizer in system

– overall excess oxidizer,  overventilated
(always the case for

open air flame)

– overall excess fuel,  underventilated

F
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m
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flame
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• Fuel, oxidizer diffuse toward flame (reaction zone)

• Products (and heat) 
diffuse away

• Flame tip

– final fuel
burnout

– location
impacted
by buoyancy

• Mixture fraction

– continuous

Overventilated Jet Flame Description
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Mixture Fraction

• Recall f def’n. (IX.5)

• So what is the meaning of this definition when 
species originating in the jet are being 
consumed (e.g., to make products)

– mixture fraction represents fraction of the 
mass at any point that originated in the jet

– e.g., CO2 molecule’s C might originate 
from the fuel in the jet, while O’s came
from the oxidizer

– similarly N2 part of “products”
for fuel jet exiting into air
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Stoichiometric Mixture Fraction

• Assuming fuel is in the jet, 
fstoich represents fraction of 
product mass that originated 
from the fuel stream

– mass conservation

• Example methane jet 
exiting into air (O2 and diluent)
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Conservation Equations
• Problem setup: rewrite conserv. eqns. IV.5,7,14,15 

for simplifying assumptions
1. same as nonreacting case: laminar, steady, p const., 

axisymmetric, quiescent/infinite reservoir, Fickian

binary diffusion, no axial diffusion (but const)

2. plus for flame: vertical jet, normal thermal diffusion, 

no radiative transfer, negl. viscous dissipation, Le=1

– use similar normalizations to nonreacting jet
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Conservation Equations

• Mass

• Axial momentum

– if Fr << /e  buoyancy controlled

– if Fr >> /e  buoyancy negligible
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Conservation Equations
• Species/Energy

– next we could write species conservation eq’ns. and  
energy equation in terms of T

– BUT run into problems with boundary conditions 
at flame/rxn zone = source/sink

– for example

• source/sink terms = 0 except in flame (rxn) zone, 
but where is the flame located?

• e.g., for flame sheet approx., locates itself to 
satisfy reactant mass flux ratio (IX.4)
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Conserved Scalars

• Solution to this problem - write equations in terms of 
scalars that have no sources or sinks in the flow

– scalar that “exists” on both sides of flame and whose 
“integral” is constant (like Je and ሶme in nonreacting
case)

• Examples

Z Yi ij

j

N

j



1

ij = mass proportion of  

element i in  species j

16/4
4,


CHH


– total enthalpy, hsens+hchem, if negligible: radiation, 
viscous dissipation, body force work
(+ no conduction to bodies) 

– mixture fraction,  f

– elemental (atom)
mass fraction
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Conserved Scalar Equations

• Species Mixture fraction

• EnergyTotal enthalpy

– same normalization as f
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Boundary Conditions

• General axisymmetric jet

– @ r* = 0, any x* /r = 0,  ur
* = 0

– @ r* = ,      = 0

– @ x* = 0, r* > 1        = 0

• For top hat/uniform exit profile

– @ x* = 0, r*  1        = 1

r*

1

x*


 = ux
*, f, h*
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Conserv. Eqn./BC Summary
• Same boundary conditions on normalized variables

• Mom./species/energy eqns (IX.17-19) similar

– no source/sink terms

• except in mom. if  buoyancy 
effects not negligible (Fr small)

– Schmidt and Lewis number dependence

• So if Le=1, h*=f ; if Fr large and Sc=1 then ux/ue = f

• Still need to relate f, h* to , T
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State Relationships

• Assuming ideal gases

• p=const a given; so to find , need T and W


– general process, starting with value for f

• So we need (state relations) f  Yi 

TRWp

  1

 ii WY

cp

 ipicY

Th

f

Yi W

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Yi State Relationships
• For flame sheet approximation (FF+OxOxPP),

linear relationships between f and YF, YOx, YP

• Example of fuel jet exiting into air 

– for f > fstoich; on fuel side of flame

• YOx = 0

• YF (f =1)=1; YF (fstoich) = 0 

• YP = 1 – YF

– similarly for f < fstoich

• YF = 0
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   stoichP ffY  11

stoichP ffY  stoichOx ffY 1
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vW
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State Relationships
• h=?

– for Le=1

• Multistep chemistry (flame sheet assumes single step)
– for fast chemistry (i.e., chemical equilibrium) can still use state 

relation, but now fuel and oxidizer can coexist

– broadens “flame”

fh *    ,,, OxeFOx hhfhh

YF

YOx
YP

Simple, linear relations for

• flame sheet approx. 

• Lei=1

• T if cp=constant

Yi

f
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f

h

1fst

hF,e

hox,
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History of Solution Approaches
• Burke & Schumann (1928)

– “classical” analytic solution

(e.g., see texts by Lewis&von Elbe; Kuo)

– assumed ux=const, ur=0 
• so mom. equation not needed

(can’t account for buoyancy)

– assumed flame sheet, single D

– reasonable results for Lf of circular flames

• Roper (1977)

– removed ux=const. limitation

– results improved for buoyant and non-circular jets

• Numerical solutions (e.g., Kee & Miller, AIAA J. 16,1978)

– can include finite rate kinetics, differential diffusion

F
m

Ox
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Simplified Solutions

• Start with simplest case

• Sc=1 (Le=1), Constant Density, Const. “Properties”, 

Flame Sheet

– ,  =v =D = = constant

– then all conservation equations become

– which gives identical solution as for nonreacting jet 
(IX.11,12)
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x

r

Solutions (Constant Density)

• Flame Location

– at f = fstoich

– from (IX.16)

– if you dilute oxidizer

– if you dilute fuel

fstoich

stoich.

oxygen/ fuel 

mass ratio
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Discussion: why?
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fstoich  (flame gets bigger)

fstoich (flame gets smaller)
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x

r

Solutions (Constant Density)

• Flame Width

– rflame where =(fstoich) 

– from (IX.11)

– r from (IX.10)

– consistent with previous flame size result
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x

r

Solutions (Constant Density)

• Flame Length

– flame tip reached when rflame=0

• get xflame=Lf from (IX.22)

– for given mass flowrate Lf  ሶmjet /  function (p)

• reduce combustor length by

Discussion: 
why?
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(IX.23)

fstoich
Lf



12

JetFlame -23

School of Aerospace Engineering

Copyright  © 2004-2005, 2020-2021 by Jerry M. Seitzman. 

All rights reserved.

AE/ME 6766 Combustion

Solutions (Burke-Schumann)

• Earliest (approximate) solution

– includes density variation

– but assumes constant ux and const. properties

• but can get same result if one assumes D=const

(though actually DT0.5-0.8 for simple gases)

• Species equation (pseudo fuel = conserved scalar)
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Functions

(series solution) 
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Solutions (Variable Density)

• Fay extended Burke-Schumann approach

– still Sc=Le=1 but with momentum equation, const

– limited to Fr large (no buoyancy)

 furef

F
constff

I
LL

refref 







 

1
2,, = density in cold oxidizer

f= density at flame

F= density in cold fuel

Iu= mometum integral (>1)

constff
LL




,

• Roper
– includes buoyancy (see Turns)

/f /ref Iu(/f)
1 1 1

3 2 2.4

5 3 3.7

7 4 5.2

9 5 7.2
after Turns Table 9.2

/ref ~ F/ref
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Non-Analytic Solutions
• Four important issues not included in most analytic 

solutions  need for numerical solutions

1. Finite Rate Chemistry

• can’t apply state relations, e.g., for f Yi

• solution will depend on chemical time scales and flow 
time scales (diffusion, residence times)

2. Differential Diffusion

• analytic solutions assumed binary diffusion

• e.g., product and intermediate species can diffuse at 
different rates

3. Axial Diffusion

• can’t neglect in near-field or for low ue (e.g., low Rejet) 

4. Temperature dependent properties


