Detonation Situations

- Here are some example situations where detonation waves occur
 - underground (coal) mine explosions
 - pipeline explosions
 - propulsion
 - pulsed detonation engines (PDEs)
 - rotating detonation engines (RDEs)
 - stellar detonations

popsci.com cdc.gov aiaa.org
Overview

- Goal of this section are:
 1. examine the likely structure of a 1-d (planar) detonation wave and explain the absence of weak planar detonations
 2. outline the solution process for and behavior of planar Chapman-Jouguet (CJ) detonations
 3. introduce the 3-d nature of quasi-planar detonation

ZND Model: Detonation Structure

- Generally, molecular collisions that equilibrate p and translational energy precede chemical reactions
 - characteristic momentum transfer collision < 1 ns
 - characteristic chemical reactions $> \mathcal{O}(1 \mu s)$

- Suggests detonation is leading shock followed by reaction zone
 - shock raises p and T
 - M goes subsonic
 - induction delay/autoignition
 - heat release, $T \uparrow, p \downarrow$ like deflagration
Weak Detonations

- After leading shock wave, flow reduced to subsonic
- To achieve weak detonation, flow must reaccelerate to $M_2 > 1$
- If induction/reaction zones only have heat release
 - would violate 2nd Law
 - can’t go from subsonic to supersonic 1D flow with heat addition ($q > 0$ always drives toward $M = 1$)

Weak Detonations

- Look at path on Rayleigh Hugoniot
 - To go from d to e, need negative heat release (endothermic reactions)
 - requires chemistry to “overshoot” equilibrium
Chapman-Jouguet Detonations

- No weak (unallowed), strong (unstable) detonation
- Only leaves Chapman-Jouguet solution
 - C-J detonation is planar detonation solution
- We have constraint to add to 5 conservation and state equations: \(M_2 = 1 \Rightarrow 6 \) eqs., 6 unknowns!

CJ Detonation Equations

- Goal: find CJ detonation wave speed, \(u_1 \equiv D_{CJ} \) and product properties \((\rho_2/\rho_1, p_2/p_1, T_2/T_1, u_2)\)
- CJ constraint
 \[u_2 = a_2 \]
 \[u_1 = \frac{\rho_2}{\rho_1} u_2 \]
 \[D_{CJ} = \frac{\rho_2}{\rho_1} a_2 \]
- Mass
 \[u_1 = \frac{\rho_2}{\rho_1} \]
 \[\frac{a_2^2}{p_2/\rho_2} \]
 \[D_{CJ} = \frac{\rho_2}{\rho_1} a_2 \]
- Rayleigh
 \[\frac{a_2^2}{p_2/\rho_2} = \frac{1 - p_2/p_1}{\rho_2/\rho_1 - 1} \]
 \[\frac{a_2^2}{p_2/\rho_2} = \frac{1 - p_2/p_1}{\rho_2/\rho_1 - 1} \]
- Hugoniot
 \[h_2(T_2,Y_2) - h_1 = \frac{1}{2} (p_2 - p_1) \left(\frac{1}{\rho_1} + \frac{1}{\rho_2} \right) \]
 \[h_2(T_2,Y_2) - h_1 = \frac{1}{2} (p_2 - p_1) \left(\frac{1}{\rho_1} + \frac{1}{\rho_2} \right) \]
CJ Detonation Eq’ns.: Ideal Gas

- Need state eqn’s
 \[p_2 = \frac{\rho_2}{\rho_1} \frac{T_2}{T_1} \]
 \[a = \frac{\gamma R}{W} T = \sqrt{\frac{p}{\rho}} \]
 \[D_CJ = \frac{\rho_2}{\rho_1} \sqrt{\gamma_2 \frac{R}{W_2} T_2} \]

- For ideal gas
 \[h_2 = h_2(T_2, p_2, Y_{i2}) \]
 \[\gamma_2 = \gamma_2(T_2, Y_{i2}) \]
 \[W_2 = W_2(Y_{i2}) \]

- Products assume chem. equil. \(Y_{i2} = Y_{i2}(T_2, p_2) \)

- For high \(M, p_2/p_1 \gg 1 \)

 \[\rho_2/\rho_1 = (\gamma_2 + 1)/\gamma_2 \]
 \[D_CJ \approx \frac{\gamma_2 + 1}{\gamma_2} \sqrt{\gamma_2 \frac{R}{W_2} T_2} \]

- Small changes in minor species do not change product properties significantly

CJ Detonation Solution Method

- Need to solve these equations (including chemical equilibrium) simultaneously
 - available in various equil. solvers (e.g., GasEq, CEA)
- By “hand” can use simple procedure for \(p_2/p_1 \gg 1 \)
 1) guess \(T_2, W_2, \gamma_2 \)
 2) get \(p_2 \) from (VI.3)
 3) solve chem. equil. at \((T_2, p_2) \) to find \(e_2, \gamma_2, W_2 \)
 4) compare \(e_2, T_2 \) with version of (V.10)
 5) iterate until requirement met, then \(D_CJ \approx \frac{\gamma_2 + 1}{\gamma_2} \sqrt{\gamma_2 \frac{R}{W_2} T_2} \)
Example: H₂-Air CJ Detonation

- 298 K, 1 atm
- Solution of full set of eqns. with chemical equilibrium solver

Detonation Limits

- 298 K, 1 atm
- Don’t get steady, self-sustained detonation if mixture is too rich or too lean
- Not equil. issue – kinetics, losses
3D Detonation Structure

- 1-d detonation
- 2-d/3-d detonation

from Timmes et al., Astrophysical J., 938-954 (2000)

AE/ME 6766 Combustion

Triple Point Region

from Numerical Simulations of Gaseous Detonations, www.cacr.caltech.edu

AE/ME 6766 Combustion
Front Propagation

Experimental Evidence

- Smoke foil records triple point tracks

from Timmes et al., Astrophysical J., 938-954 (2000)