Overview

- Having now examined mechanisms for fuel oxidation (H₂, CO and HC), the goal here is to revisit mechanisms for NOₓ production:
 1. thermal mechanism (extended Zeldovich) for high T, lean conditions
 2. N₂O mechanism for low T, lean conditions
 3. NNH mechanism for high T, stoich/rich, H₂
 4. Fenimore/prompt mechanism for hydrocarbon fuel-conversion zones
 5. NO₂ mechanism for NO→NO₂ conversion in low T regions
NOx Formation

- NO\textsubscript{x} (NO, NO\textsubscript{2}, NO\textsubscript{3}) important pollutant
 - NO\textsubscript{2} leads to acid rain/photochemical smog/O\textsubscript{3}
 - combustion NO converted to NO\textsubscript{2} in atmosphere
 - can also directly impact human health
- Observation: original Zeldovich mechanism does not accurately predict NO production in
 - wet air
 - low T combustion with long residence times
 - stoichiometric and rich H\textsubscript{2}-air flames
 - low residence time or rich hydrocarbon flames
- Need more advanced NO mechanisms

Thermal NO Mechanism

- Already described basic Zeldovich mechanism
 - add reaction for “wet” systems (H species) \(\Delta H_R\)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(\Delta H_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Zeldovich Mechanism</td>
<td></td>
</tr>
<tr>
<td>(N_2 + O \leftrightarrow NO + N) ({NO.1})</td>
<td>+75.1 kcal/mol</td>
</tr>
<tr>
<td>(O_2 + N \leftrightarrow NO + O) ({NO.2})</td>
<td>-32.1 kcal/mol</td>
</tr>
<tr>
<td>(OH + N \leftrightarrow NO + H) ({NO.3})</td>
<td>-48.7 kcal/mol</td>
</tr>
</tbody>
</table>
- Thermal NO Formation
 - still rate limited by \(\{NO.1f\}\)
 - dominates at high T (\(\geq 1800\)K), lean environments
 - long \(\tau_{res}\) usually required (postflame gases)
 - superequilibrium \([O]\), \([OH]\) increases NO prod. rate
Intermediate N_2O Mechanism

- N_2 first converted to N_2O then NO
 $N_2 + O(+ M) \leftrightarrow N_2O(+ M) \{ NO.4 \}$
 $\Delta H_R = -40 \text{ kcal/mol}$
- $N_2O + H \leftrightarrow NO + NH \{ NO.5 \}$
 $\Delta H_R = +35 \text{ kcal/mol}$
- $N_2O + O \leftrightarrow NO + NO \{ NO.6 \}$
 $\Delta H_R = -36 \text{ kcal/mol}$

NO Formation
- $\{ NO.4 \}$ has Lindemann-like p dependence ($k_0 \rightarrow k_{\infty}$)
- medium to high activation energies
 - $E_a(\text{kcal/mol})$: 18$\{ NO.4 \}; 35\{ NO.5 \}; 23\{ NO.6 \}$
- important in low T, fuel lean ($\phi \leq 0.8$) systems (+ high p)
- NH from $\{ NO.5 \}$ can also lead to NO
 - $NH + O \rightarrow NO + H \{ NO.10 \}$
 - $NH + O_2 \rightarrow NO + OH \{ NO.11 \}$

N_2O destruction via $N_2 + O \leftrightarrow N_2 + OH \{ NO.7 \}$

NNH Mechanism

- Thermal + nitrous mechanisms “ok” for H_2-air, BUT
- NO also produced via NNH intermediate
 $N_2 + H(+ M) \leftrightarrow NNH(+ M) \{ NO.12 \}$
 $\Delta H_R = +6.5 \text{ kcal/mol}$
 $NNH + O \leftrightarrow NO + NH \{ NO.13 \}$
 $\Delta H_R = -11.3 \text{ kcal/mol}$
- $\{ NO.13 \}$ has same products as $\{ NO.5 \}$
- and NH can also lead to NO via $\{ NO.10 \}$ and $\{ NO.11 \}$
- Where is NNH mechanism (path) important?
 - for $T \geq 2200 \text{ K}$, important for stoichiometric and rich, low residence time systems, H_2-air flames
 - for $T \geq 1900 \text{ K}$, most impact (relative to thermal NO_x) near stoichiometric (and at lower T)
Fenimore/Prompt Mechanism

- In thermal, N_2O, and NNH mechanisms, NO produced via conversion from attack on N_2/O_2 via radicals containing only N, O, H nuclei
- Sufficient for wet air and hydrogen combustion
- NO can also be produced in hydrocarbon combustion via C species
 - prompt NOx – Fenimore observed NO formed earlier in HC combustion than possible from thermal mechanism
- General reaction scheme
 - CH_x (e.g., CH, CH_2 and CH_3) radicals react with molecular nitrogen to form HCN (hydrogen cyanide)
 - conversion to NO through various intermediates

Fenimore Scheme

- Early version of the mechanism
- Rate limiting step
 \[
 CH + N_2 \leftrightarrow HCN + N \quad \text{conversion of N_2}
 \]
- Conversion to NO
 \[
 HCN + O \leftrightarrow NCO + H \\
 NCO + H \leftrightarrow NH + CO \\
 NH + H \leftrightarrow N + H_2 \\
 N + OH \leftrightarrow NO + H
 \]
- conversion to NO via radical/radical reactions
- Limited accuracy (e.g., $\phi<1.2$)
General Prompt Mechanism

- Many reactions for range of rich mixtures/fuels
 - graphical representation (ref. Bowman, 24th Combustion Symposium)

```
CH_x (x=1,2,3) \[\rightarrow\] H, OH \[\rightarrow\] HCN \[\rightarrow\] NHCN \[\rightarrow\] OCN \[\rightarrow\] NCHN \[\rightarrow\] NH \[\rightarrow\] NO \[\rightarrow\] N\_2 \[\rightarrow\] \text{also in thermal mech.}
```

NO\textsubscript{2} Mechanism

- Noted that NO converted to NO\textsubscript{2} in atmosphere
 - combustion systems also convert NO to NO\textsubscript{2}
 - sometimes be significant fraction of total combustor NOX emissions \([NO]+[NO_2]\)

\[
NO + HO_2 \leftrightarrow NO_2 + OH \quad \{NO_2.1\} \quad \text{HO}_2 \text{ formed @ low T}
\]

\[
NO_2 + H \leftrightarrow NO + OH \quad \{NO_2.2\}
\]

\[
NO_2 + O \leftrightarrow NO + O_2 \quad \{NO_2.3\}
\]

- No NO\textsubscript{2} from hot regions
- NO\textsubscript{2} in combustion systems often comes from NO formed in hotter regions mixing into low T regions
Example: Premixed Laminar Flame

- NO₂, prompt important in reaction zone; thermal in downstream
- \(\phi = 0.85 \)
- \(\text{NO}_2 + \text{H} \rightarrow \text{N} + \text{H}_2 \) => Prompt mech.
- \(\text{N}_2 + \text{O} \) => Thermal Mech.

\(\text{CH}_4/\text{air} \)
1 atm
300K/80°F inlet

\(\text{HO}_2 + \text{NO} \rightarrow \text{NO}_2 + \text{OH} \)

Primary source of N?