Equilibrium Diagrams and Saturated Liquid/Vapor Systems

- In equilibrium, different phases of matter
 - gas, liquid, solid (also multiple solid phases, e.g., different crystalline structures of steel)
- So far looked at individual phases of simple (homogeneous) substances
- Multiple phases can exist simultaneously in equilibrium
- Consider heating simple compressible substance at constant pressure

Phase Transitions - Constant Pressure

<table>
<thead>
<tr>
<th>Transition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1→2</td>
<td>Melting</td>
</tr>
<tr>
<td>2→3</td>
<td>Evaporation</td>
</tr>
<tr>
<td>3→2</td>
<td>Freezing/Fusion</td>
</tr>
<tr>
<td>4→5</td>
<td>Condensation</td>
</tr>
</tbody>
</table>

Small change in v until gas
Phase Equilibrium and Saturated Liquid/Gas Systems

Typical T-ν Diagram

Phases of Compressible Substances

- **Triple Line**
 - all 3 phases can coexist at same T and P

- **Critical Point**
 - maximum T and p at which distinct liquid and gas phases can coexist

- **Supercritical States (or supercritical fluid)**
 - for $p > p_{\text{crit}}$), no distinct transition from liquid to gas, fluid can have characteristics of both

AE3450
Phase Equilibrium and Saturated Liquid/Gas Systems

- Phase space not just 2 dimensional

Mixed Phase Regions

- Independent TD properties
 - p and T not independent
 - phase transition at const. p, T (e.g., given T_{sat}, know p_{sat})
- Can define new intensive variable to characterize composition
 - describe how much of each phase present
 - should not depend on total mass
Quality of Saturated Liquid-Vapor

- For saturated liquid-vapor region (vapor dome)
 - new variable is quality, x
 \[
 x \equiv \frac{m_g}{m_{\text{mixture}}} = \frac{m_g}{m_f + m_g}
 \]
 - x gives fraction of mass that is gas (g)
 - $(1-x)$ is fraction of mass that is liquid (f)
 - $0 < x < 1$ (0 for liquid, 1 for gas)

Volume of Saturated Liquid-Vapor Mixture

- Get TD properties of saturated mixture by summing up proper amount of property for each phase, e.g.,
 \[
 V_{\text{mix}} = m_g v_g + m_f v_f = m_{\text{mix}} \left[\frac{m_g v_g + m_f v_f}{m_{\text{mix}}} \right]
 \]
 or
 \[
 v_{\text{mix}} = x v_g + (1-x) v_f = v_f + x(v_g - v_f)
 \]
 - where
 $g \rightarrow$ gas, $f \rightarrow$ liquid
Saturated Liquid-Vapor Mixture Properties

- For general intensive property \(y \) that obeys sum rule,

\[
\begin{align*}
y_{\text{mix}} & = xy_g + (1-x)y_f \\
\text{or} & \\
y_{\text{mix}} & = y_f + x y_{fg}
\end{align*}
\]

with \(y_{fg} = y_g - y_f \)

- \(y_{\text{mix}} \) always bounded by \(y_f, y_g \)
- does not work for \(\rho (\rho \neq \rho_1 + \rho_2) \)

Does \(T_{\text{mix}} \) obey sum rule?

Example 1:

- **Given:** 3 kg of water at 200°C with quality \(x = 0.6 \)
- **Find:** Volume (\(V \)) and internal energy (\(U \))
- **Assume:** phase equilibrium
Example 1:

Analysis:

\[V = m[v_f + xv_{fg}] \]

Table B.1

\[V = 3 \text{ kg} [0.0011564 + 0.6(0.1262)] \frac{m^3}{kg} \]

\[V = 3 \text{ kg} [0.07688 \text{ m}^3/\text{kg}] \]

\[V = 0.231 \text{ m}^3 \]

\[U = m[u_f + xu_{fg}] \]

\[U = 3 \text{ kg} [850.58 + 0.6(1744.1)] \frac{kJ}{kg} \]

\[U = 3 \text{ kg} [585.850] \frac{kJ}{kg} \]

\[U = 5691 \text{ kJ} \]

Note:

- \(v_{mix} \gg v_f \) (~70x)
- because \(v_g \gg v_f \)
- or \(\rho_g \ll \rho_f \)
- \(u_g \) only ~3\(u_f \)

What is pressure of mixture?

Example 2:

Given: 5 lb\(_m\) of water initially at 700°F and 2000 psia in rigid container

Find: How much energy loss required to cool water to 300°F

Assume: equilibrium initial and final state

Analysis:

\[Q = \Delta U = m(u_1 - u_2) \]

Need \(u_2 \) and \(u_1 \)
Example 2:

V = const

\[T_1 = 700\,^\circ\text{F} \]
\[p_1 = 2000\,\text{psi} \]
\[m = 5\,\text{lb}_m \]

\[Q \]

\[u_1 = \ ? \]

\[T > T_{\text{sat}} \]

– superheated vapor

\[u_1 = 1147.2\,\text{BTU/lb}_m \]

\[\text{AE3450} \]

Example 2:

V = const

\[T_2 = 300\,^\circ\text{F} \]
\[u_2 = 0.249\,\text{ft}^3/\text{lb}_m \]
\[m = 5\,\text{lb}_m \]

\[Q \]

\[v_2 = v_f + x_f v_f \]

\[u_2 = 299\,\text{BTU/lb}_m \]

\[\Delta U = m(u_1 - u_2) = Q \]

\[= 4240\,\text{BTU}(4.47\,\text{MJ}) \]

\[\text{AE3450} \]
Example 2: V=const

$T_1 = 700^\circ F$
$p_1 = 2000 \text{ psi}$
$v_1 = 0.25 \text{ ft}^3/\text{lb}_m$
$m = 5 \text{ lb}_m$

$T_2 = 300^\circ F$
$p_2 = 66.97 \text{ psi}$
$v_2 = 0.25 \text{ ft}^3/\text{lb}_m$
$m = 5 \text{ lb}_m$

Do phases always coexist in equilibrium?