Turbine Overview

• Configurations (axial, radial, mixed), analysis and other issues similar to compressors

• Compared to compressors
 – higher loading $\Delta h_i/U^2$ (or specific work) and pressure ratio per stage - why?
 • favorable pressure gradient
 – usually much higher temperature inlet
 • higher temperature materials (strength) and/or blade cooling
Turbine Analysis

- Similar to compressor analysis
 - Euler turbomachinery (conservation) equations
 \[T = m \left[(rc_\theta)_{i+1} - (rc_\theta)_{i} \right] \]
 \[\dot{W} = m \left[u_{i+1} c_{\theta,i+1} - u_{i} c_{\theta,i} \right] \]
 - and cascade flow to find \(\Delta c_\theta \)
 - 1→2 nozzle
 - 2→3 rotor

Turbine Cascade Analysis

- Now blade moves upward (flip sign convention); again fixed \(r, u_1 = U \)
 \[w_1 = c_z, \quad w_\theta + c_\theta = U, \quad \vec{c} = \vec{w} + \vec{u} \]
- Therefore for rotor, and constant \(c_z \)
 \[c_{\theta_2} = c_z \tan \alpha_2 \]
 \[c_{\theta_3} = U - c_z \tan \beta_3 \]
 \[\frac{\Delta c_{\theta_{2,3}}}{U} = 1 - \frac{c_z (\tan \beta_3 + \tan \alpha_2)}{U} \]
 \[= \Delta h_{\theta_{2,3}} / U^2 \]
- same form of blade loading eqn for turbine as compressor

Mechanics and Thermodynamics of Propulsion, Hill and Peterson

AE4451 Propulsion
Stage Pressure Ratio

- For adiabatic turbine with TPG/CPG

\[
Pr = \frac{P_{o1}}{P_{o3}} = \left[1 + \frac{1}{\eta_{st}} \left(\frac{T_{o3} - T_{o1}}{T_{o1}} \right) \right]^{1/\gamma} = \left[1 + \frac{1}{\eta_{st}} \left(\frac{\Delta h_{o,3}}{U^2} \gamma RT_{o1} \right) \right]^{1/\gamma} > 1 \text{ as written}
\]

- Stage pressure ratio still depends on
 1. \(\psi = f(U = r\Omega, \Delta c_\theta) \)
 2. blade \(M = f(r\Omega, T_{o1}) \)
 3. \(\eta_{st} \)

Axial Turbine Maps

- Larger stage pressure ratios and efficiencies then compressors
- Peak efficiency on-design
- For fixed RPM, larger pressure change (drop) at higher mass flowrate
 - more work extracted per unit mass
- At high (corrected) mass flowrate, nozzle becomes choked
Blade Design: Degree of Reaction

- We have TWO blade parameters to design
 - rotor trailing edge (match β_3)
 - nozzle trailing edge (match α_2)

- How to do this?
 1. Degree of reaction, R
 2. Stage exit condition constraint (α_3)

$$\Delta c_{\theta,2,3} = 1 - \frac{c_i}{U} \left(\tan \beta_3 + \tan \alpha_2 \right)$$

Similar issue for compressor; we just "ignored" designing α_1

Degree of Reaction

- Recall
 $$R \equiv \frac{\Delta h_{\text{rotor}}}{\Delta h_{\text{stage}}}$$
 - allows us to distribute load (static pressure change) between rotor and nozzle (or stator)
 - how to relate static enthalpy change to azimuthal velocity changes?
 - ΔKE!! $h_o = h + \frac{v^2}{2}$
 - for stationary blade, no work done
 $$\Delta h_o = 0 \Rightarrow \Delta h = -\Delta KE$$
 - e.g., nozzle blade if c_z constant, and negligible c_r
 $$h_2 - h_1 = \left(\frac{c_{z,2}^2 + c_{\theta,2}^2}{2} \right) - \left(\frac{c_{z,1}^2 + c_{\theta,1}^2}{2} \right) = \left(c_{\theta,1}^2 - c_{\theta,2}^2 \right) / 2$$
Degree of Reaction (Turbine)

- Rotor blades??
 - are “stationary” in rotor’s reference frame
 \[h_3 - h_2 = \left(w_{\theta_2}^2 - w_{\theta_3}^2 \right) / 2 \]

- Reaction

\[
R = \frac{h_3 - h_2}{h_3 - h_1} = \frac{h_3 - h_2}{(h_{o3} - c_3^2) + (h_{o1} - c_1^2)}
\]

if \(c_1 \approx c_3 \)

\[
R \approx \frac{h_3 - h_2}{h_{o3} - h_{o1}} = \frac{w_{\theta_2}^2 - w_{\theta_3}^2}{2U \left(c_{\theta_3} - c_{\theta_1} \right)}
\]

\[\Delta c_{\theta_{3,1}} = 1 - \frac{c_3}{U} (\tan \beta_3 + \tan \alpha_2) \]

relates design blade angles to azimuthal KE change

Impulse Turbine

- \(R = 0 \)
 - all the pressure change occurs across the nozzle, or the nozzle creates high KE

\[w_{\theta_2}^2 - w_{\theta_3}^2 = 0 \implies w_{\theta_3} = -w_{\theta_1} \]
\[c_z \tan \beta_3 = -c_z \tan \beta_2 \]
\[\implies \beta_3 = -\beta_2 \quad \Delta w_{\theta_3} = -2w_{\theta_1} \]

\[\Delta c_{\theta_{3,1}} = 1 - \frac{c_3}{U} (\tan \beta_3 + \tan \alpha_2) \]

\[\frac{\Delta c_{\theta_{3,1}}}{U} = 2 \left(1 - \frac{c_3}{U} \tan \alpha_2 \right) \]
Impulse Turbine

- So for impulse turbine, blade loading coeff.

\[
\frac{\Delta h_{\text{stage}}}{U^2} = \frac{\Delta c_{\theta_3}}{U} = 2 \left(1 - \frac{c_z}{U} \tan \alpha_2 \right)
\]

- Relates blade loading to nozzle exit angle

\[
\tan \alpha_2 = \frac{U}{c_z} \left(1 - \frac{\Delta h_{\text{stage}}}{2U^2} \right)
\]

- From \(\Phi \) equation, rotor blade angles given by

\[
\tan \beta_3 = -\tan \beta_2 = \tan \alpha_2 - \frac{U}{c_z}
\]

Impulse Turbine

- To let largest power per unit mass flow rate \(\Rightarrow \) large \(\alpha_2 \)
 - tends to produce high velocities and \(p_0 \) losses
 - practical limit, \(\sim 70-75^\circ \)

- Further possible constraint
 - no exit swirl \(\Rightarrow c_{\theta_3} = 0 \)

\[
\frac{\Delta c_{\theta_3}}{U} = 2 \left(\frac{c_z}{U} \tan \alpha_2 \right) = \frac{c_{\theta_1}}{U}
\]

\[
\Rightarrow \frac{\Delta c_{\theta_3}}{U} = 2 \left(\frac{\Delta c_{\theta_1}}{U} \right) \Rightarrow \Delta h_{\text{stage}} = \frac{U^2}{U^2} = -2
\]

\[
\Rightarrow \tan \alpha_2 = 2(U/c_z), \quad \tan \beta_3 = U/c_z
\]
50% Reaction Turbine

- \(R = 0.5 \)
 - balanced p drop across stage
 \[\frac{\Delta h_{stage}}{U^2} = \frac{\Delta c_{\theta_{1.3}}}{U} = \left(\frac{1}{c_2} - \frac{\tan \alpha_2}{U} \right) \]
 \[\Rightarrow \tan \beta_2 = \tan \alpha_2 \]
 - if no exit swirl
 \[\frac{\Delta h_{flow}}{U^2} = -1 \Rightarrow \alpha_2 = \beta_2 = \tan^{-1} \left(\frac{U}{c_2} \right) \]

half loading of impulse: less power/stage

Compressor-Turbine Matching

- Another part of design/operational requirement
- Need to "match" compressor and turbine stages on same spool
- Steady operation match
 1. \(N \) (RPM)
 2. \(\dot{m} \)
 3. \(\dot{W} \)
- Iterative procedure
Turbine Stresses/Operational Limits

- Turbine blades experience large stresses: bending, thermal and centrifugal (rotor: 10^4-10^5 g)
- Materials exhibit significant loss of strength and enhanced creep at high T
 - low strength at modern engine T_{o4} (high ST, η_{th})
 $T_{o4} > 1400^\circ\text{C}$
 (2500°F)

Turbine Inlet Temperature Evolution

- Solutions
 - high temperature materials
 - blade cooling
 - TBC (thermal barrier coatings)
Turbine Blade Cooling

- Usually use compressor (bleed) air
- Configurations
 - internal passages
 - external
 - film cooling
 - tip cooling
- Heat transfer designed to
 - focus on “hot” spots and initial stages
 - minimize stress concentration

Rotor and nozzle cooling configurations
Introduction to Heat Transfer

• Consider a simplified version of a (half) turbine blade
 • Inner cooling only
 – neglect film and tip cooling for now
 – hot gas (combustor products) flows over outer surface
 – “cold” gas (bleed air) flowing over inner surface
 – turbine blade “wall” in between
• How to analyze this “heat transfer” problem?

Conduction Heat Transfer

• Start with description of (conduction) heat transfer through the wall
 – assume one-dimensional
 – top side of wall uniform temp. \(T_{\text{outer}} \)
 – bottom side of wall uniform temp. \(T_{\text{inner}} \)
• Look at energy equation
 – differential CV
 \[Q_{\text{in}} = \frac{d}{dt} \left(mc \frac{dT}{dx} \right) + Q_{\text{out}} \]
 – steady
 \[\dot{Q}_{\text{in}} = \dot{Q}_{\text{out}} \]
• Need model for \(\dot{Q} \)
 – Fourier’s Law (1d)
 \[\frac{\dot{Q}}{A} = -k \frac{dT}{dx} \]
Conduction and Thermal Conductivity

- For steady, uniform material
 - T gradient is a constant
 \[\frac{dT}{dx} = -\frac{\dot{Q}}{kA} \]
 - so T varies linearly through wall

- Thermal conductivity
 - insulators like ceramics have much lower conductivities than metals

<table>
<thead>
<tr>
<th>Material</th>
<th>k (W / mK) at 1000°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel Super Alloys</td>
<td>20-30</td>
</tr>
<tr>
<td>Ceramic TBC’s</td>
<td>1-2</td>
</tr>
</tbody>
</table>

- so TBC will produce much lower heat flux for same temperature gradient

Effect of Adding TBC Coating

- Example Ni alloy with
 \[\dot{Q} = -k \frac{dT}{dx} = -25 \frac{W}{mK} \quad 700K \quad 5mm = 3.5 \frac{MW}{m^2} \]

- Now add 500µm TBC
 \[\dot{Q} = -k \frac{dT}{dx} = -k \frac{\Delta T}{\Delta x} \quad x \quad \Delta x = 0.5 \quad mm \]

 \[\Rightarrow T_{mid} = \frac{\dot{Q}}{A} = \frac{\Delta x}{k_{TBC}} \frac{k_{TBC}}{k_{alloy}} \frac{\Delta x}{k_{alloy}} \frac{k_{alloy}}{k_{TBC}} \]

 \[T_{mid} = 962K \]

 \[\dot{Q} = -25 \frac{W}{mK} \quad 262K \quad 5mm = 1.3 \frac{MW}{m^2} \]

Most of the temperature drop occurs across TBC, much lower metal T and lower heat transfer
Convective Heat Transfer

- Examine heat transfer between gas flow and blade wall
- Convective heat transfer
 - due to fluid moving over surface
 - thermal boundary layer develops, like momentum boundary layer
- Model
 - so \(T_{\text{wall}} \) varies downstream
 - e.g., for laminar flow over flat plate

\[
\dot{Q}/A = h(T_{\text{gas},x} - T_{\text{wall}}) = h(Re_z, Pr)
\]

\[
h = 0.332 Pr^{-2/3} Re_z^{-1/2}
\]

Stanton Number

\[
\overline{h} = 0.664 Pr^{-2/3} Re_z^{-1/2}
\]

averaged over full length

Convective Heat Transfer - External

- Example
 - hot air
 - Analysis

- \(L = 4 \text{ cm} \)
- \(p = 10 \text{ atm} \)
- \(T_{\text{gas}} = 1850 \text{ K} \)
- \(T_{\text{wall}} = 1400 \text{ K} \)
- \(v = 250 \text{ m/s} \)
- \(Pr = 0.7 \)
- \(v = 3 \times 10^4 \text{ m}^2/\text{s} \)

\[
h_{\text{1mm}} = 0.332 \left(\rho_s c_p v \right) Pr^{-2/3} Re_{1mm}^{-1/2}
\]

\[
= 0.332 \left(\frac{1.013 \text{ MPa}}{1850 \text{ K}} \frac{1.28}{1.28 - 1} \frac{250 \text{ m/s}}{3 \times 10^{-4} \text{ m}^2/\text{s}} \right) 0.7^{-0.667} \left(\frac{250 \text{ m/s} (0.001 \text{ m})}{3 \times 10^{-4} \text{ m}^2/\text{s}} \right)^{-0.5}
\]

\[
= 0.332 \left(\frac{626 \text{ kW}}{m^2 \text{ K}} \right) 0.7^{-0.667} 833^{-0.5} = 9 \frac{\text{kW}}{m^2 \text{ K}}
\]

\[
\overline{h}_{\text{L}} = 2 h_{z=L} = 2.9 \frac{\text{kW}}{m^2 \text{ K}}
\]

\[
\dot{Q}_{\text{1mm}}/A = 9 \frac{\text{kW}}{m^2 \text{ K}} (1800 - 1400) \text{ K} = \frac{4 \text{ MW}}{m^2}
\]

\[
\dot{Q}_{\text{total}}/A = 1.3 \frac{\text{ MW}}{m^2}
\]

much higher heat load around leading edge
Turbine Blade Analysis

• In our two examples
 – conduction through TBC-coated alloy $\sim 1.3 \text{MW/m}^2$
 – convective heat transfer into blade $\sim 1.3 \text{MW/m}^2$
• So together they represent a single problem
 $$\dot{Q}/A_{\text{convection}} = \dot{Q}/A_{\text{conduction}}$$
• Next step is to investigate bleed air cooling requirement

Cooling – Convection Internal Flow

• In pipe/channel flow can’t assume infinite flow
 – boundary layers meet and central flow changes with axial distance
• Now
 $$\frac{Q}{A} = \frac{Q}{L \times \text{perimeter}} = h(T_{\text{inner}} - T_{\text{bulk, coolant}})$$
• New expressions for h, e.g., for round tubes
 – turbulent flow, profile still developing
 – averaged over channel length
 $$h = 0.036 \frac{k}{d} Re^{0.8} Pr^{1/3} \left(\frac{d}{L} \right)^{0.055}$$
Turbine Blade Analysis

- Assuming same information in previous examples AND 2mm height channels with span = 80% of blade chord, with 500K, 30 m/s inlet bleed air, negligible spacing between channels

\[
\frac{\dot{Q}_{\text{cool}}}{A} = \frac{1}{2} h(T_{\text{inner}} - T_{\text{bleed}})
\]

\[
h = 191 \text{W/m}^2
\]

\[
\frac{\dot{Q}_{\text{cool}}}{A} = 20 \text{kW/m}^2
\]

- Much less than the cooling requirement from previous parts of the analysis – need to enhance the cooling \(\Rightarrow\) film cooling