Laminar Nonpremixed Combustion: Evaporating Droplets

Jerry Seitzman

Liquid Fueled Combustion

- Pool flames
- Atomized sprays
- Droplet evaporation vs. burning
- Simplify
 - single, spherical droplet (surface tension), moving with flow
Evaporation Process

- For evaporation (no burning)
 - mass loss
 - heating

\[\dot{m} = \frac{d}{dt} \left(\dot{m} c_p T \right) \]

Evaporation: Droplet Evolution

- Mass loss, evaporation must be balanced by heat transfer to drop
- Instantly place drop in hot gas
- After short time, heating and (small amount) of evap.
- Eventually quasi-steady state
 - not T_{bp}
Evaporation Rate

- How fast does droplet lose mass \(\dot{m} = ? \)
- Assumptions
 1. Quiescent, infinite medium
 2. Quasi-steady
 3. Uniform droplet
 4. Single component liquid (not soluble for gas)
 5. Binary (Ficks Law) diffusion
 6. Constant thermophysical properties \((c_p, \rho D, \lambda, \ldots) \)
 7. No viscous dissipation, buoyancy,….

Evaporation Rate – Conservation Eq.

- Mass
 \[\dot{m}(r) = \text{constant} \]
 \[\dot{m} = \dot{m}_F = 4\pi r^2 \dot{m}' = \text{const} \quad (1) \]
- Species
 \[\dot{m}'_s = Y_f \dot{m}' - \rho D \nabla Y_F \]
 \[\dot{m} = -4\pi r^2 \frac{\rho D}{1 - Y_F} \frac{dY_F}{dr} \]
 \[\frac{dY_F}{1 - Y_F} = \frac{\dot{m}}{4\pi \rho D} \]
 \[\frac{\dot{m}^*}{4\pi \rho D} = \frac{\dot{m}}{4\pi \rho D} \]
Evaporation Rate – Conservation Eq.

• Species (con’t)
 - integrate from r_s to arb. r

 \[Y_F(r) = 1 - \frac{(1 - Y_{F,\infty})e^{-r_s/r}}{e^{-r_s/r}} \]

 (2)

 - use ∞ B.C. in (2)

 \[\dot{m} = -4\pi Dr_s \ln(1 + B_s) \]

 (4) $Y_{F,s}$ can’t be 1; $B_s \to \infty$

• This is evaporation rate – with 2 unknowns

Evaporation Rate – Conservation Eq.

• Energy ($c_p = \text{const}$)

 \[\dot{m}c_p \frac{dT}{dr} = \frac{d}{dr} \left(\frac{\lambda A 4\pi^2 r^2 \frac{dT}{dr}}{dr} \right) \]

 \[? r_s^* = 4\pi^2 r^2 \frac{dr}{dr} \]

 (5)

 - integrate

 \[? \text{const} + r_s^* T = r_s^2 \frac{dT}{dr} \]

 - at droplet surface, no convection - evaporation

\[r_s^2 \frac{dT}{dr} \bigg|_{r_s} = \frac{\dot{m}}{4\pi^2} h_{fg} \lambda \frac{dT}{dr} \bigg|_{r_s} = \dot{m}_s (h_{\text{ap}} - h_{\text{liq}}) \]

heat flux at surface (∇T_s) drives evaporation/regression
Evaporation Rate – Conservation Eq.

- **Energy** (constant)
 - use surface grad in (5)
 \[r^2 \frac{dT}{dr} = r_s^* \left(T - T_s + \frac{h_{fg}}{c_p} \right) \]
 - integrate (like species eq.) and use \(T_\infty \) B.C.
 \[\frac{r_s^*}{r} = \ln \left[\frac{c_p (T_\infty - T_s) + h_{fg}}{c_p (T - T_s) + h_{fg}} \right] \]

\[T(r) = \left(r_s^* - \frac{h_{fg}}{c_p} \right) + \left(T_\infty - T_s + \frac{h_{fg}}{c_p} \right) e^{-\frac{h_{fg}}{c_p} r} \]

\[m = -4\pi \rho \alpha r_s \ln (1 + B_h) \] (8)

Spalding Transfer # (for energy)

Mass and Species Summary

- Compare (4) and (8)
 \[m = -4\pi \rho Dr_s \ln (1 + B_h) \]

- For \(Le = 1 \)
 \[B_y = B_h \]
 \[\frac{Y_{F,s} - Y_{F,\infty}}{1 - Y_{F,s}} = \frac{c_p (T_\infty - T_s)}{h_{fg}} \] (9)

- So need relation for \(Y_{F,s} \) vs. \(T_s \)
 - then can find evaporation rate (and \(Y_{F,s}, T_s \))
Wet Bulb Temperature

- Assume **phase equilibrium** between liquid and vapor at droplet surface
- **Clausius Clapeyron equation** determines vapor pressure of interface

\[
\frac{dp}{dT} = \frac{h_f}{T v_f} > 0 \\
\frac{dp_{vap}}{dT} = \frac{h_f}{T v_f} \\
\frac{dp_{vap}}{p_{vap}} = \frac{h_f}{T v_f} \\
\frac{p_{vap}}{p_{vap}} = \frac{T}{v_f} \\
\Rightarrow \ln p_{vap} = -\frac{h_f}{RT} + C
\]

\[
P_{vap} \approx Ce^{-h_f(T_{vap})/RT_{vap}}
\]

\[
C = pe^{-h_f(T_{vap})/RT_{vap}}
\]

Wet Bulb Temperature

- In terms of mass fraction

\[
Y_{F,s} = Y_{F,vap}(T_s) = \chi_{F,vap}(T_s) \frac{W_F}{W_{mix}}
\]

\[
Y_{F,s} = \frac{p_{vap}(T_s)}{p} \frac{W_{mix}}{W_F} = \frac{(p_{vap}/p)W_F}{(1-p_{vap}/p)W_{ax}}
\]

\[
Y_{F,s} = \left[1 + \left(\frac{p}{Ce^{-h_f(T_s)/RT_s}} - 1\right)\frac{W_{ax}}{W_F}\right]^{-1}
\]

\[\text{(10)}\]

equilibrium relation between \(T_s\) and \(Y_{F,s}\)
Evaporation Rate Summary

• For given droplet size \(r_s \), quasi-steady result

\[
\frac{\dot{m}}{r_s} = -4\pi \rho D \ln \left(1 + B_y\right) = -4\pi \rho \alpha \ln \left(1 + B_h\right)
\]
\[
B_y \equiv \frac{Y_{F,s} - Y_{F,\infty}}{1 - Y_{F,s}} \quad B_h \equiv \frac{c_s(T_\infty - T_s)}{h_{fs}}
\]

• Use phase equilibria to find \(Y_{F,s}(p, T_s) \) from (10)

• If constant \(\rho D, \rho \alpha \) and constant \(T_s, Y_{F,s} \) \(\Rightarrow B_y, B_h \) constant

\[
\frac{\dot{m}}{r_s} = \text{constant}
\]

Droplet Lifetime

• How does droplet diameter change with time?
• How long until droplet evaporated (diam=0)?
 – droplet lifetime

• Droplet mass

\[
m_d = \rho_s \pi d_s^3 / 6
\]

• Mass loss rate

\[
\frac{\dot{m}_d}{d_s} = \frac{\dot{m}}{d_s} = \rho_s \frac{\pi}{2} \frac{d_s \dot{d}_s}{dt} = \rho_s \frac{\pi}{4} \frac{d(d_s^2)}{dt}
\]

 – compare to quasi-equil. result

\[
\frac{\dot{m}_d}{r_s} = \text{constant}; \quad \frac{d(d_s^2)}{dt} = \frac{2}{\rho_s \pi} \frac{\dot{m}_d}{d_s^2/2} = -8\rho_s \alpha \ln \left(1 + B_h\right) \equiv K
\]

Evaporation Constant
Droplet Lifetime

"D² Law" \[\frac{d(d_s^2)}{dt} = -K \Rightarrow d_s^2(t) = d_s^2(0) - Kt \] (12)

- rate that \(d^2 \) changes is constant
- Lifetime
 - \(d_s = 0 \) \(t_d = \frac{d_s^2(0)}{K} \) (13)
 - neglects transient
 - for HC in hot air, \(K \approx 10^{2-3} \mu m^2/\text{ms} \)
 - e.g., \(K = 1000 \mu m^2/\text{ms} \)
 \[\Rightarrow t_d(200 \mu m) = 40 \text{ ms} \]
 \[t_d(2 \mu m) = 4 \mu s \]

small droplets evaporate much faster after Lefebvre

Calculating \(K \)

\[K = 8 \frac{\rho_s}{\rho_l} \alpha \ln(1 + B_h) = 8 \frac{1}{\rho_l c_p} \ln \left(1 + \frac{c_p(T_w - T_s)}{h_{fs}} \right) \]

- Law and Williams suggest for HC/air systems
 - use \[c_p = c_{p,F} \left(T \right) \quad T = T_{wb} + T_w \]
 \[\lambda_s = 0.4\lambda_F \left(T \right) + 0.6\lambda_\infty \left(T \right) \quad T_{wb} \rightarrow T_{bp} \]

- Note
 - \(K \approx 1/\rho_l \), \(K \downarrow \rho_l \uparrow \) - lighter liquids evaporate faster
 - \(K \downarrow h_{fs} \uparrow \) - volatile liquids evaporate faster
Additional Comments

- Similar results for other liquid to gas phase change
- Also for phase change of solid to gas
 - sublimation of solids, ablation heat transfer, solid propellant combustion
- Heat flux to surface determines regression rate
 \[
 \left. \lambda \frac{dT}{dr} \right|_{\text{surface}} = \dot{q}''_{\text{surface}} = \dot{r} \rho_{\text{condens}} \left(\Delta h_{\text{phasechange}} + \Delta h_{\text{sens}} \right)
 \]
 in absence of radiation, controlled by T grad. at surface
- Other important effects
 - convective cooling (slip velocity) – dense sprays
 - internal circulation – multicomponent
 - supercritical behavior (high pressure) – fuels
 - transient time (high heat rates) – solubility

Other Effects

- Evaporation increased by convection (slip velocity)
 \[
 K_{\text{conv}} \approx K \left(1 + 0.22 \sqrt{\text{Re}_D} \right)
 \]
- Include transient effects (conv. + transient)
 \[
 K_{\text{eff}}(T_{bp}, \bar{u}, d) \to
 \]