Chemical Kinetics: k Models, Unimolecular/Termolec. Reactions

Jerry Seitzman

Collision Model: Example

$O_2 + Ar \rightarrow O + O + Ar$

- L-O-C Collision theory result

$$k = \frac{N}{\sigma} \sigma e^{-E_d/RT}$$

$$E_d = 494 \text{ kJ/mol}$$

$$k = P_{\text{steric}} \frac{6.02 \times 10^{23}}{\text{mol}} \left(16 \times 10^{-16} \text{ cm}^2\right) \sigma_{\text{elastic}} \frac{8 \cdot 1.38 \times 10^{-23} J/K \cdot T}{\pi (17.8 \cdot 1.673 \times 10^{-22} \text{ kg})} e^{\frac{59.500K}{T}}$$

<table>
<thead>
<tr>
<th>T (K)</th>
<th>$k_{\text{coll}}/P_{\text{steric}}$</th>
<th>k_{exper}</th>
<th>P_{steric}</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 K</td>
<td>5.2×10^{-19}</td>
<td>2.5×10^{-17}</td>
<td>0.02</td>
</tr>
<tr>
<td>1600 K</td>
<td>9.9×10^{-3}</td>
<td>1.7×10^{-1}</td>
<td>0.06</td>
</tr>
<tr>
<td>3200 K</td>
<td>1.6×10^{6}</td>
<td>9.7×10^{5}</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Collision Model
- Breaks down for low T
- Good for high E_d

k, cm3/mole sec
Collision Model: Accuracy

- Collision model “works” for bimolecular reactions of simple molecules (atom + radical, simple dissoc.)
 - $P_{\text{steric}} \approx O(0.1)$
 - no extra energy barrier
- More complex molecules
 - P_{steric} decreases
 - added energy barrier
 - need reduced E_a barrier (only included transl. energy)

Potential Surfaces for Reactions

- Need to account for forces between multiple nuclei as they rearrange themselves during “collision”
- Can be modeled on computer with classical or quantum trajectories
- But difficult

$O + H_2 \rightarrow OH + H$
Activated Complex/Transition State

- Find minimum energy configuration of intermediate state
 - saddle point of energy surface
- Transition state highly unstable, but may exist for very small time
 - allows nuclei/electrons time to rearrange
- Use statistical mechanics to find k

Transition State Theory for k

- Assume unique minimum energy pathway exists (reaction coord.)
- Assume AB, C and ABC^* in equilibrium
 - from statistical mechanics
 $$\frac{N_{ABC^*}}{N_{AB}N_C} = \frac{Q_{ABC^*}}{Q_{AB}Q_C} e^{-E_{of}/RT}$$
 $$N_{ABC^*} = N_{AB}N_C \sqrt{\frac{2\pi mk_{\text{Boltz}}}{h}} \delta \frac{Q'_{ABC^*}}{Q_{AB}Q_C} e^{-E_{of}/RT}$$
 transl. degree of freedom of ABC^* along r
TST Model – Production Rate

- Rate at which activated complexes become products (A+BC) depends on
 - number of activated complexes N_{ABC^*}
 - rate at which they move along r
 \[
 \frac{dN_{prod}}{dt} = N_{AB}N_{C} \sqrt{\frac{2k_{B}T}{\pi \mu}} \sqrt{\frac{2\pi \mu k_{B}T}{h}} \frac{Q'_{ABC^*}}{Q_{AB}Q_{C}} e^{-\frac{E_{af}}{RT}}
 \]

TST Model for k – Result

- Converting to molar concentrations
 \[
 \frac{d[BC]}{dt} = \left[AB \right] \left[C \right] N_{Av} \frac{k_{Boltz}T}{h} \frac{q'_{ABC^*}}{q_{AB}q_{C}} e^{-\frac{E_{af}}{RT}}
 \]

\[
 k(T) = \kappa \frac{RT}{h} \frac{q'_{ABC^*}}{q_{AB}q_{C}} e^{-\frac{E_{af}}{RT}}
\]

- Find partition functions $q(T)$ from statistical mechanics
- Gives better T dep., closer agreement to exper.

Other improvements
- Variational TST
 - if motion along r is somehow hampered

AE/ME 6766 Combustion
Unimolecular Reactions

- Revisit unimolecular reactions $CO_2 \rightarrow CO + O$
 - experimental evidence indicates CO production can be 1st order (but not at low p)
 - how does this really happen
 - if collided with another molecule, 2nd order?
 - if collided with wall at same T as gas – how does energy of molecule increase to dissociation energy?
- Important to understand
 - important in first steps of some combustion systems

Lindemann-Hinshelwood Mechanism

$A \rightarrow \text{products}$

- Observed behavior is not due to single reaction
 - multistep reaction mechanism
 - excitation $A + M \rightarrow A^* + M$
 - activated complex with “long” lifetime
 - de-excitation $A^* + M \rightarrow A + M$
 - for $CO_2 \rightarrow CO + O$
 - CO_2^* could be vibrationally excited state
 - unimolecular product formation $A^* \rightarrow \text{products}$
 - $\frac{d[\text{prod}]}{dt} = k_{\text{uni}}[A^*]$
 - but what is $[A^*]$?

AE/ME 6766 Combustion
Overall Production Rate

\[A + M \rightarrow A^* + M \]

- Combine all steps to find \(\frac{d[A^*]}{dt} \)
\[
\frac{d[A^*]}{dt} = k_e [A][M] - k_{de} [A^*][M] - k_{uni} [A^*] \quad A^* \rightarrow \text{products}
\]

- Assume that \([A^*]\) is in **steady-state**
 - this assumption often made for minor species to simplify kinetics problems since \([\text{minor}] < [\text{major}]\) often means \(d[\text{minor}]/dt << d[\text{major}]/dt\)

\[
[A^*] = \frac{k_e [A][M]}{k_{de} [M] + k_{uni}}
\]

Unimolecular \(k \)

- Combining steady-state result into \(d[\text{prod}]/dt \)
\[
\frac{d[\text{prod}]}{dt} = k_{uni} [A^*] = k_{uni} \frac{k_e [A][M]}{k_{de} [M] + k_{uni}}
\]

- Apparent reaction rate constant
\[
A \rightarrow \text{products} \quad k^1 = k_{uni} \frac{k_e [M]}{k_{de} [M] + k_{uni}}
\]

\[
\frac{d[\text{prod}]}{dt} = k^1 [A] = \frac{k_e [M]}{1 + k_{de} [M]/k_{uni}}
\]
Termolecular Reactions

- Common three body collision: **recombination**
 \[A + A + M \rightarrow A_2 + M \]
 - requires three molecules in the same place at “nearly” the same time
 - third body removes excess kinetic energy/velocity

- **Optional multistep mechanism**
 - “short” but finite lifetime of intermediate state (complex formation)
 \[
 \begin{align*}
 A + M &\rightarrow AM^* \\
 A + A &\rightarrow A_2^* \\
 A + AM^* &\rightarrow A_2 + M \\
 A_2^* + M &\rightarrow A_2 + M \\
 AM^* &\rightarrow A + M \\
 A_2^* &\rightarrow A + A
 \end{align*}
 \]