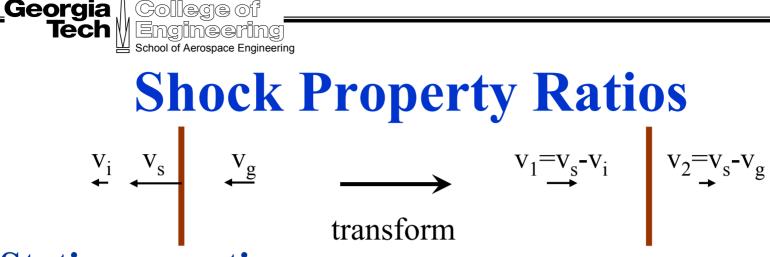

- So far, considered changes across shock wave for the case of the shock not moving
 - observer "sitting" on the shock, moving with shock
- What happens to properties if we consider the shock to be moving
 - observer not moving at same speed as shock



Coordinate Transformation

- First, convert moving shock to stationary shock
 - Galilean transform
 - switch directions (+) and add shock speed, \boldsymbol{v}_{s}

• Now shock problem looks same as stationary (steady) problem that we already solved

- Static properties
 - property you would measure if moving with flow
 - so, unaffected by transformation
 - e.g., still use $T_2/T_1 = \left(1 + \frac{\gamma 1}{2}M_1^2\right) / \left(1 + \frac{\gamma 1}{2}M_2^2\right)$ with $M_1 = v_1/a_1$; $a_1^2 = \gamma RT_1$; $T_1 = T_i$; etc.
- Stagnation properties
 - depend on velocity; not same after transform
 - find using static properties and M_i , M_g

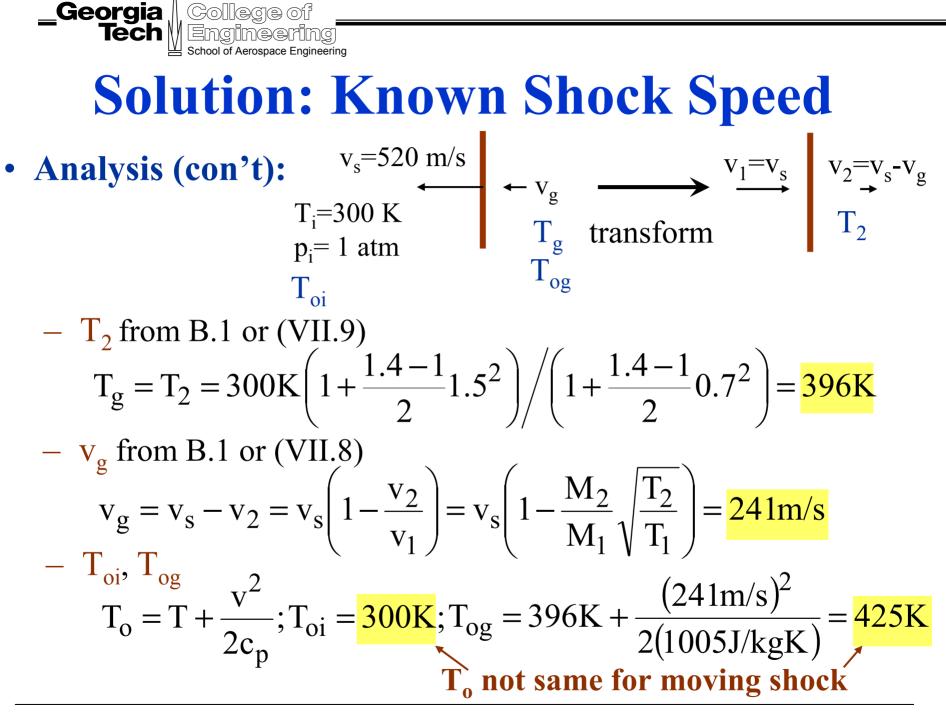
Example: Known Shock Speed

• Given: Normal shock moving at 520 m/s into still air (300 K, 1 atm)

 $T_i=300 \text{ K}$ $v_s=520 \text{ m/s}$ $p_i=1 \text{ atm}$ T_{oi}

• Find:

- 1. Temperature behind shock (after shock passes)
- 2. Velocity of gas behind shock (in "lab" reference frame)
- 3. Stagnation temperature before and after shock (in lab ref. frame)
- **Assume:** Air TPG/CPG with $\gamma=1.4$


Solution: Known Shock Speed

• Analysis: Transform to stationary shock

- find M_1 in stationary frame

$$M_{1} = \frac{v_{1}}{a_{1}} = \frac{v_{1}}{20\sqrt{T_{1}}} = \frac{v_{1}}{20\sqrt{T_{1}}} = \frac{520}{20\sqrt{300}} = 1.50$$

- M₂ from B.1 or (VII.11)

$$M_2 = \sqrt{\left(M_1^2 + \frac{2}{\gamma - 1}\right) / \left(\frac{2\gamma}{\gamma - 1}M_1^2 - 1\right)} = 0.70$$

AE3450

Example: Known Postshock Pressure

Vs

 $\mathbf{v_g} = \mathbf{v_p}$

 T_2

- **Given:** Supersonic projectile (or equivalently piston) pushing gas ahead in tube filled with **initially still air**
 - leading shock
 produced
 - p₂ measured

• Find:

1. shock speed (v_s) (lab reference frame)

 $v_i = 0$

2. projectile speed (v_p) (lab reference frame)

 $T_1 = 294 \text{ K}$

 $p_1 = 101.3 \text{ kPa}$

• **Assume:** Air TPG/CPG with γ =1.4

 $p_2 = 608 \text{ kPa}$

Solution: Known Postshock Pressure

• Analysis: Transform to stationary shock

$$T_{1}=294 \text{ K}, V_{s}$$

$$V_{g}=V_{p}$$

$$T_{2}$$

$$T_{1}=V_{s}$$

$$V_{1}=V_{s}$$

$$V_{2}=V_{s}-V_{p}$$

$$T_{2}$$

$$T_{2}$$

$$T_{2}$$

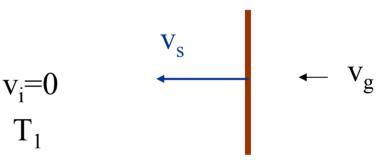
$$T_{1}=V_{s}$$

$$V_{1}=V_{s}$$

$$V_{1}=V_{1}$$

$$V_{1}=V_{1}$$

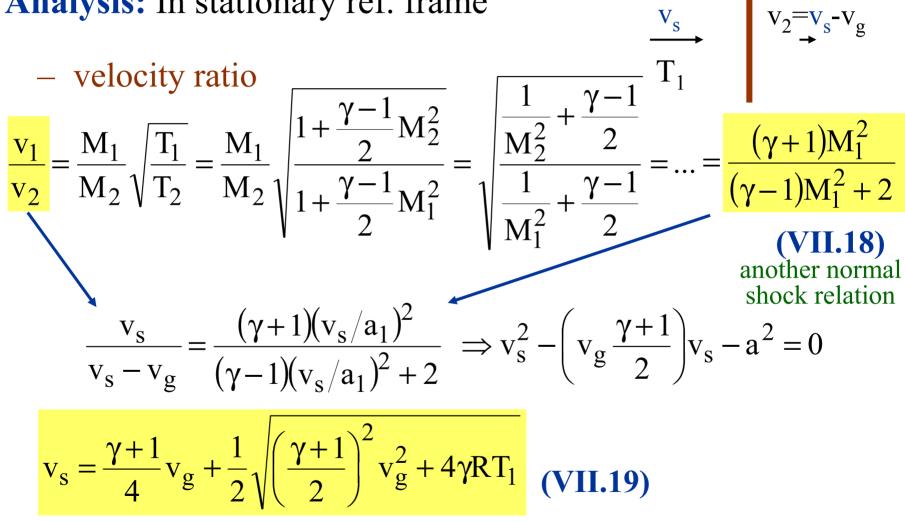
$$V_{1}=V_{1}$$


$$V_{1}=V$$

AE3450

Example: Postshock Speed Known

• **Given:** Normal shock **moving into still gas** (at T₁) produces known gas speed (v_g) behind shock


AE345()

- Find:
 - Expression for shock speed v_s in terms of v_g
- Assume:
 - TPG/CPG

Solution: Postshock Speed Known

• Analysis: In stationary ref. frame

Numerical Example: Known v_g

- **Given:** Piston impulsively set into motion at 400 m/s in 25cm² tube filled with **initially still air** @ 290K, 100 kPa
 - leading shock
 produced

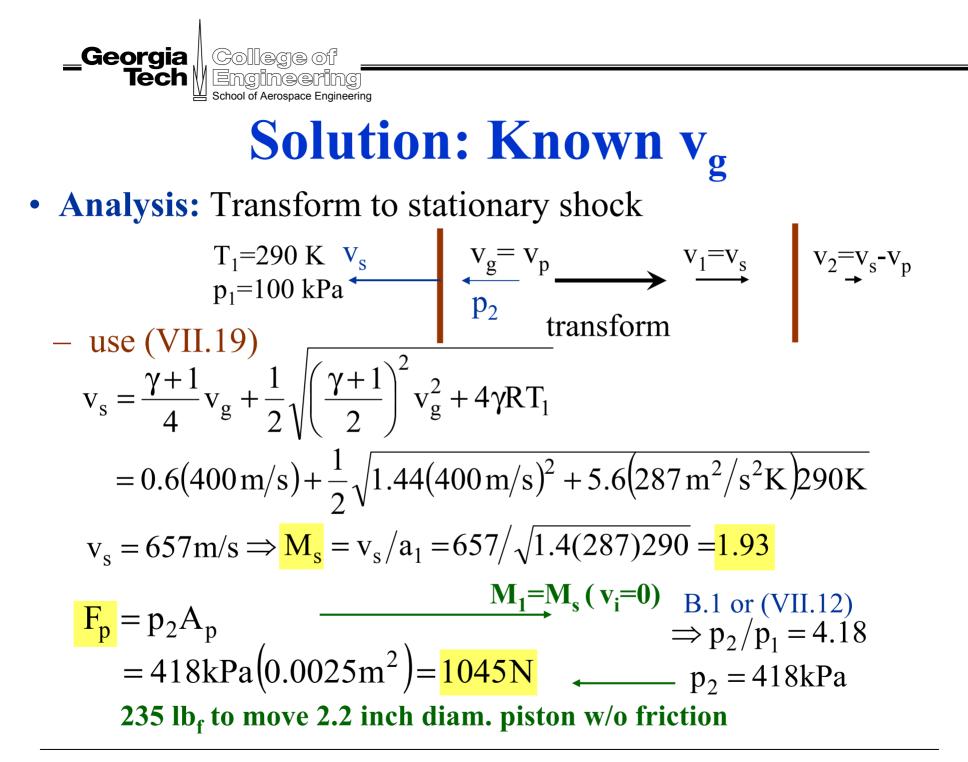
• Find:

1. Mach number of shock, M_s (relative to unshocked gas)

M_c

p₂

400 m/s


2. Force, $\mathbf{F}_{\mathbf{p}}$, required to keep piston moving

 $T_1 = 290 \text{ K}$

 $v_i = 0$

 $p_1 = 100 \text{ kPa}$

• **Assume:** Air TPG/CPG with $\gamma=1.4$, no friction on piston

AE3450