

Normal Shocks in CD Nozzles

- Recall previous analysis of converging-diverging nozzles
 - e.g., as back pressure is reduced
- Once p_b lowered enough p to get sonic flow at throat:
 2 *isentropic* solutions
 - higher $p_b(=p_e)$, subsonic
 - lower $p_b(=p_e)$, supersonic

Nonisentropic Solutions

- What happens for p_b in between the isentropic solutions?
 - nonisentropic flow
- For $p_b < p_{b1}$
 - flow starts to go
 supersonic after throat
- For p_{b1}>p_b>p_{b4}, p must
 increase above supersonic
 isen. case to match p_b
 ⇒ shock in diverging section

Shocks Inside Nozzle

- Over what range of back pressures will there be shock in nozzle
 - until shock occurs at exit plane of nozzle
- So, question becomes what is exit pressure when normal shock sits at exit?
 - answer found by
 combining isentropic
 and shock solutions

- Find: What range of back pressure, p_b will produce shock in nozzle (throat →exit)?
- **Assume:** TPG/CPG with γ =1.4
- **Analysis:** Exit pressure, p_e, will have to match back pressure

Solution: Shock at Exit

- Analysis (con't):
 - "Shock" at throat

(Use isentropic relations/tables)

$$M_{es,sup} = 3 \Longrightarrow M_{es,sub} = 0.138$$
(same $\Delta / \Delta^* - 4.235$)

$$(\text{same A}_{e}/A = 4.235)$$

 $p/p_{o}|_{M=0.138} = 0.9867$
 $\Rightarrow p_{b} = p_{es,sub} = 98.67\% p_{o}$

– Shock at exit

(supersonic isentropic flow up to exit) $p/p_o|_{M_{es}=3.0} = 0.0272 \Rightarrow p_{es,sup} = 2.72\% p_o$ (normal shock at M=3, shock relations/tables) $M_1=3$ $M_2=M_e$ $M_{e,sh} = M_2|_{M_1=3} = 0.475$ and $p_2/p_1|_{M_1=3} = 10.33$ $\Rightarrow p_b = p_{es,sup}^{-1}(p_2/p_1) = 28.1\% p_o$

AE3450

Over- and Underexpanded Nozzles

- What happens if back p/p_0 pressure goes below value 1^{-1} where shock is at exit, $< p_{b3}$
 - isentropic flow up to exit,
 supersonic exhaust
 - shocks (and expansions)
 outside nozzle
 (not normal shocks)
- p_{b4}<p_b<p_{b3}
 Overexpanded exhaust
- p_b < p_{b4}
 Underexpanded exhaust

Normal Shocks in CD Nozzles -6