

Shock Waves

- Already examined behavior of *weak* waves
 - sound waves, $d\rho/\rho \rightarrow 0$
 - reversible (isentropic)
- Now look at *strong compression* waves
 - shock waves, $\rho_2 > \rho_1$
 - irreversible (nonisentropic)
- Shock waves
 - thin regions (~µm's): changes in fluid properties nearly discontinuous
 - rapid change in pressure/density due to *internal* viscous stresses
 - excluding radiation, *adiabatic*

ρ+dρ T+dT

p

p₁

 $ho_1 - T_1$

Formation of Shock Waves

- Imagine series of discrete compression waves
 - e.g., produced by piston in tube accelerated to higher and higher velocities in discrete "pushes"

- Each pulse of piston produces weak compression wave traveling @ speed of sound in moving gas in front of it
- Each wave travels in wake of previous waves, each travels slightly faster (v[↑], and a[↑] since T[↑])

Shocks -3

Expansion (Rarefaction) Waves

• Can group of expansion waves also coalesce?

- Successive waves see colder gas, lower a

 each new wave is slower than last
- For continuous expansion wave

• So can not create expansion "shock"

