

Stagnation Properties and Mach Number

- Rewrite stagnation properties in terms of Mach number for <u>thermally and calorically perfect gases</u>
- Stagnation Temperature
 - <u>from energy conservation</u>: no work but flow work and **adiabatic**
 - \Rightarrow **T**_o (and **h**_o) constant for adiabatic flow
- Stagnation Pressure
 - <u>from entropy conservation</u>: reversible and adiabatic
 ⇒isentropic (∆s=0)
 - \Rightarrow **p**_o (and **s**_o) constant if *also* reversible

 $T_{o} = T + \frac{1}{c_{p}} \frac{v^{2}}{2} = T + \frac{\gamma - 1}{2} \frac{v^{2}}{\gamma R}$ $\frac{T_{o}}{T} = 1 + \frac{\gamma - 1}{2} \frac{v^{2}}{\gamma RT} = 1 + \frac{\gamma - 1}{2} \frac{v^{2}}{a^{2}}$ $\frac{T_{o}}{T} = 1 + \frac{\gamma - 1}{2} M^{2}$ (VI.6) from state $\underline{\mathbf{p}_{o}} = \left(\underline{\mathbf{T}_{o}}\right)^{\gamma} \gamma - 1$ eq. for isen. process $+\frac{\gamma-1}{M^2}$

Compressible p_o and Bernoulli Equation

- Incompressible flow, **Bernoulli eqn.** also gives a stagnation pressure (static + dynamic pressure) $p_o = p + \frac{1}{2}\rho v^2$
- Expand compressible p_0 in **Taylor series** $(1+x)^n = 1 + nx + \frac{n(n-1)}{x^2} + \frac{n(n-1)}{x^2}$

$$\frac{p_o}{p} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\gamma - 1} = 1 + \frac{\gamma}{\gamma - 1}\frac{\gamma - 1}{2}M^2 + \frac{\gamma}{2(\gamma - 1)}\left(\frac{\gamma}{\gamma - 1} - 1\right)\left(\frac{\gamma - 1}{2}M^2\right)^2 + \dots$$

$$\frac{p_o}{p} = 1 + \frac{\gamma}{2}M^2 + \frac{\gamma}{2}\left(\frac{M^2}{2}\right)^2 + \dots = 1 + \frac{\rho}{2}\frac{v^2}{p} + \frac{\rho}{8}\frac{v^2}{p}M^2 + \dots$$

$$use M^2 = \frac{v^2}{\gamma p/\rho}$$

Bernoulli higher terms negligible for small M (<0.3) 0.3²/4=0.0225

Stag. Props. and Mach Number -2

 $p_o = p + -pv + -pv + -pv - - + ...$

Stagnation Density and Tables

- Stagnation Density
 - from T_o, p_o and ideal gas law ($\rho = p/RT$) **o. constant** for $\frac{\rho_0}{\rho} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{1}{\gamma - 1}}$
 - $-\rho_{o}$ constant for isentropic flow

$$\frac{\rho_{o}}{\rho} = \left(\frac{T_{o}}{T}\right)^{1/\gamma-1}$$

(VI.8)

Tables

- T_o/T and p_o/p tabulated in text (John) as function of M listed as T_t/T and p_t/p (t for *total* T and total p)
- $-\gamma = 5/3$ (Table A.3): atoms (Ar, He, ...) at "not too high" T
- $-\gamma = 1.4$ (Table A.1): diatomics (N₂, O₂, ...) at "moderate" T
- $-\gamma = 1.3$ (Table A.2): more atoms or higher T
- make your own?

Stag. Props. and Mach Number -3

Stagnation versus Static Properties

Static Properties

- represent the properties you would measure if you were moving with the flow (at the local flow velocity)
- always defined in the flow's reference frame

Stagnation Properties

- always defined by conditions at a point
- represent the (static) properties you'd measure if you first brought the fluid at that point to a stop (isentropically) with respect to a chosen observer
- depends on observer's reference frame

AE3450

Stagnation Properties: Example

- **Supersonic** projectile (M=2) flying through still air
- **Static** conditions: $T_{\infty}=250$ K, $p_{\infty}=0.003$ atm

• Find:

- **1.** T_o at A (T_{oA}) relative to observer on projectile
- **2.** T_{oD} (same observer) <, >, = T_{oA} ?
- **3.** \mathbf{p}_{oB} (same observer)
- **4.** $\mathbf{p_{oC}}$ (same observer) <, >, = $\mathbf{p_{oB}}$?

shock

streamline

Stagnation Properties: Example 2

- Projectile flying through still air at 170 m/s
- Static conditions: $T_{\infty}=288$ K, $p_{\infty}=1$ atm
- Nose of projectile = point B
- Find:
 - **1.** \mathbf{p}_{oA} (relative to observer on projectile)
 - 2. p_B
 - 3. T_B
- Hint, use $a = \sqrt{\gamma RT}$

