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Alrbreathlng Propulsion

* Overview

— we will be examining a number of airbreathing
propulsion systems
 ramjets, turbojets, turbofans, turboprops
 Performance parameters

— to compare them, useful to define some parameters that
are relevant to making a “good” propulsion system
— helpful if they don’t depend on engine size
« Specific Thrust (ST)
« Specific Fuel Consumption (SFC)
+ Various engine efficiencies, n

« Then we will use cycle analysis to predict performance
as function of various design variables
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JetmEngine Thrust

* From momentum

; :
conservation Ta Z \
— steady, uniform, inviscid e

_ single nozzle exhaust stream ™ > _?
u —
T= (ma + mf )Ue - mau +(pe - pa)Ae
=m,_|(1+ f)u,—u -
e=m [0 v -ule(p-p)A
Specific ¢ (P, = P.)A | for subsonic
Thrust = m_ = [(1+ f )ue N u]+ m nozzle exhausts,
(ST) a i Pe=Pa
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Ovérall Efficiency

» How to characterize an aircraft propulsion system
based on how well it produces the desired output
(thrust) given the “cost” input (fuel)

- Similar to a cycle efficiency, W, /Q,
we can define an Overall Efficiency

— for thrust producing engines
u < thrust power

(111.2) T = m, Ah, | — heating rate from fuel

— for turboshafts .
H H Wshaft
goal of engine is to n,=—
produce shaft power m, Ah,
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Thermal and Propulsive Efficiencies

» We can also break down the overall process of how
an engine produces thrust into two steps

fuel energy — AKE of propellant — thrust work
thermal efficiency propulsive efficiency

« Thermal Efficiency ;
— for thrust produced = AKE | AKE= KEou— KEin
using nozzles M Ahe |11 3)

* e.g., simple turbojet
1+ fu?-u?

; 1 . . 2 1 .2
AKE =—{m, +m; g ——=m,u =
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Thermal Efficiency
— for thrust produced AKE
using a nozzle (H1.4) |7 = M. Ah
« this is just the cycle efficiency -

for a cycle that outputs kinetic My Afe

energy (nozzle) instead of S R
work (turbine) KEin KE out

 nozzle exhaust contains gas that is fast (KE)
but also hot (thermal energy), so 7, < 100%

— for a turboshaft engines (and turboprops where
most of the output power is to the drive shaft)

Wshaft
m, Ah,
fuel energy — shaft power

N =

\
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Propulswe Efficiency

* How “efficient” is kinetic energy n = u
i ' P - (115
change in producmg t_hrust AKE (111.5)
. 1-(.e.g.f s;mzpleltgrbZOJet ) 2(¢/m,
AKE:E m, +m; ue—zmau p (1+f)uez—u2
(P.—PJA o — L+ f)u, /u-1
—=|1+f e s .a if e~ Ma =2 —t
R

\f =0.01

PN

little KE change —1 as u,—> U

Y

lots of “wasted” KE —0 for u,>>u

2

o
N

Propulsive Efficiency, n,
o o o N
o

for static thrust case =0 for u=0

o

-

15 2 25 3
ug/u
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n, can be >1 since fuel is being ejected too
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Propulsive Efficiency

» For turboprop engines, it is typical to replace
propulsive efficiency with a propeller efficiency

T,u

pr

Mor =3 7, = thrust from propeller
Wshaft

— if turboprop derives significant thrust from an
engine exhaust nozzle (in addition to the propeller),
then sometimes useful to define an equivalent shaft

power
- - T U total thrust power
Wshaﬁ,equiv :Wshaft 1+ nozzle then 77pr ==
pr shaft,equiv
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Efficiency Relations

« From our definitions

no— AKE o
o m;Ahg AKE
p— w J—

M Ah, o

only need to know 2 of the

111.6 =
( ) |7 My efficiencies to find the 3

— or for turboprop

770 = nthnpr
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Specmc Fuel Consumption, SFC

* How much does a given amount of thrust “cost” in
fuel?

» Thrust Specific Fuel Consumption (TSFC)

- also related .
lower SFC = m, st  Mg/m, f
greater range for TSFC=— =, = ﬁ
an aircraft z J(Iy) z/m,
SFC has units where f represents
5, = wu all the fuel added
°  m,Ah,
_ . u if you know ,
TSFC = n,Ah,  you know TSFC
0]
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SpeC|f|c Fuel Consumption

* For turboshaft engines, can define a shaft power
based SFC

IT]f
BSFC =

shaft

— this metric can be applied to any type of fuel-
burning (combustion) engine that produces shaft
power (diesels, spark-ignition, ...)

— “brake” is a hold-over name from the way that shaft-
power was typically tested

« on a dynamometer where the shaft power is
absorbed (a “brake”) and measured
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Jet Engmé Performance History

» How has jet engine performance improved since
turbojet were first developed in the 1930’s

» The following information is adapted from
Progress in Aero Engine Technology (1939-2003)
by Dilip R. Ballal (University of Dayton)
and Joseph Zelina (AFRL)
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Search for Higher Thrust

« 1903: 134 Ib; Wright Flyer
 1939: 1,000 Ib; (~4450N) von Ohain/Whittle
« 2004

— 35,000 Ib; Military Engine

~ 115,000 Ib, (GE90-115B) 8% of single F-1

engine in Saturn V
— tested up to 120,000 Ib;

woeAdapted from Ballal and Zelina Ak4451
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Gas Turbine Thrust Improvements
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Since 1939, static thrust increased >110x for civil engines
and 20x for military engines

e edAdapted from Ballal and Zelina AF4451

%L

Specmc"Thrust Improvements
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Thrust/Weight
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For comparison ~85 for Saturn V F-1 Engine
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Efficiencies
_AK, S
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« Overall efficiencies 10
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1939: 15% (von Ohain and Whittle)

2003: 30% (Military Engine) Modern aeroengine thermal
40% (Civil Engine) efficiency approaching 50%
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Specific Fuel Consumption
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Take-off thrust specific fuel consumption is near 0.34 (0.034)
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Reliability
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