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Airbreathing Propulsion
• Overview

– we will be examining a number of airbreathing

propulsion systems

• ramjets, turbojets, turbofans, turboprops

• Performance parameters

– to compare them, useful to define some parameters that 

are relevant to making a “good” propulsion system 

– helpful if they don’t depend on engine size

• Specific Thrust (ST) 

• Specific Fuel Consumption (SFC)

• Various engine efficiencies, 

• Then we will use cycle analysis to predict performance 

as function of various design variables
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Jet Engine Thrust

• From momentum

conservation

– steady, uniform, inviscid

– single nozzle exhaust stream 
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Overall Efficiency

• How to characterize an aircraft propulsion system 

based on how well it produces the desired output 

(thrust) given the “cost” input (fuel)

• Similar to a cycle efficiency,

we can define an Overall Efficiency

– for thrust producing engines

– for turboshafts
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Thermal and Propulsive Efficiencies

• We can also break down the overall process of how 

an engine produces thrust into two steps

fuel energy  KE of propellant  thrust work

thermal efficiency        propulsive efficiency

• Thermal Efficiency

– for thrust produced 

using nozzles

• e.g., simple turbojet 
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Thermal Efficiency
– for thrust produced 

using a nozzle

• this is just the cycle efficiency 
for a cycle that outputs kinetic 
energy (nozzle) instead of 
work (turbine)

• nozzle exhaust contains gas that is fast (KE) 
but also hot (thermal energy), so th < 100%

– for a turboshaft engines (and turboprops where 
most of the output power is to the drive shaft) 

fuel energy  shaft power
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Propulsive Efficiency

• How “efficient” is kinetic energy 

change in producing thrust

• e.g., simple turbojet 
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p can be >1 since fuel is being ejected too
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Propulsive Efficiency

• For turboprop engines, it is typical to replace 

propulsive efficiency with a propeller efficiency

– if turboprop derives significant thrust from an 

engine exhaust nozzle (in addition to the propeller), 

then sometimes useful to define an equivalent shaft 

power
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Efficiency Relations

• From our definitions

– or for turboprop
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Specific Fuel Consumption, SFC

• How much does a given amount of thrust “cost” in 

fuel?

• Thrust Specific Fuel Consumption (TSFC)
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Specific Fuel Consumption

• For turboshaft engines, can define a shaft power 

based SFC

– this metric can be applied to any type of fuel-

burning (combustion) engine that produces shaft 

power (diesels, spark-ignition, …)

– “brake” is a hold-over name from the way that shaft-

power was typically tested 

• on a dynamometer where the shaft power is 

absorbed (a “brake”) and measured
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Jet Engine Performance History

• How has jet engine performance improved since 

turbojet were first developed in the 1930’s

• The following information is adapted from 

Progress in Aero Engine Technology (1939-2003)

by Dilip R. Ballal (University of Dayton) 

and Joseph Zelina (AFRL)
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• 1903:   134 lbf Wright Flyer

• 1939: 1,000 lbf (~4450N) von Ohain/Whittle

• 2004

– 35,000 lbf Military Engine

– 115,000 lbf (GE90-115B)

– tested up to 120,000 lbf

Search for Higher Thrust

~8% of single F-1 
engine in Saturn V

Adapted from Ballal and Zelina



7

Airbreathing Propulsion -13

School of Aerospace Engineering

Copyright  © 2017, 2018, 2020  by Jerry M. Seitzman. All rights reserved. AE4451

Gas Turbine Thrust Improvements
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Adapted from Ballal and Zelina

Since 1939, static thrust increased >110 for civil engines 
and 20 for military engines
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Specific Thrust Improvements
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Adapted from Ballal and Zelina
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Thrust/Weight

• 2003: 7 

Rolls Royce Trent

• 2003: 6.5 

Military Engine

• 1939: 1.2 

von Ohain/Whittle

• 1903: 0.67

Wright Flyer

For comparison ~85 for Saturn V F-1 Engine

Adapted from Ballal and Zelina
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• th = 

• Overall efficiencies

1903: 10%  (Wright Flyer)

1939: 15%  (von Ohain and Whittle)

2003: 30% (Military Engine)

40% (Civil Engine)
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Adapted from Ballal and Zelina

Efficiencies

Modern aeroengine thermal 

efficiency approaching 50%
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Specific Fuel Consumption

0.1

0

0.05

S
F

C
  
(k

g
/h

r/
N

)

0.15

Adapted from Ballal and Zelina

Take-off thrust specific fuel consumption is near 0.34 (0.034)
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Life on Wing

• Early jet engines lasted <10 hours

• Modern civil engines can stay on wing 

for >10,000 hours

• Military engines last up to 800 hours

Adapted from Ballal and Zelina
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Reliability

Adapted from Ballal and Zelina


