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Thermodynamic Cycle Analysis
• One powerful use of TD is study of systems that 

manipulate energy (original motivation for TD)
– heat engines: thermal energy conversion to work

• convert ? energy  thermal energy  work (shaft)

– thermal transfer systems: refrig., heat pumps 

• These devices typically employ a working 
substance/fluid that goes through a (repeating) process 
 thermodynamic cycle
– closed cycle

• same working fluid continuously 
circulates through cycle

– open cycle
• fluid enters and leaves device, but 

new fluid (at same initial condition) 
keeps replacing exhausted fluid

T

s

1

2

3

4

T

s

1

2

3

4

in
exit

(steam power plant, refrig,...)

(jet engine, rocket, car engine,…)

but 

same 

analysis 

used for 

both

Cycle Analysis -2

School of Aerospace Engineering

Copyright  © 2017, 2018, 2020 by Jerry M. Seitzman. All rights reserved. AE4451

Ideal Cycles and State Diagrams

• Simply analysis of many real devices with ideal cycle

1. ideal fluid, e.g., thermally, calorically perf. gas

2. simplify processes, e.g., combustor replaced by 

nonreacting heat exchanger

3. open  closed, e.g., surroundings (atmos.) = ht xchngr

4. reversible, i.e., all components internally reversible

• Useful to visualize cycle processes on state diagrams
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Carnot Cycle
• Start by examining a completely

reversible cycle

• Carnot cycle: 4 processes

– 2 rev. isentropic  (12, 34)

• work, but no heat transfer

– 2 rev. isothermal (23, 41)

• heat transfer (and work?)

• What is efficiency of a device that

follows this cycle?

• For heat engine
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Carnot Cycle

• To find  use energy conservation 

– consider C.S. around engine

– so

– if rev.
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1) get max  for TH>>TL ;   add heat at high T as possible 

(reject heat at low T as possible)

2) even though every process in Carnot cycle is rev., can’t get 

100% efffic. (unless TL=0)

3) can show no 2 T heat engine has higher  than Carnot

TL TH %

300 600 50.0

300 2400 87.5

200 2400 91.7
(II.19)
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Brayton Cycle
• Ideal cycle for jet engines, 

gas turbines

– 2 rev+adiabatic processes

• compressor 23

• turbine (expansion) 45

– 2 rev+isobaric processes

• combustor (heat add) 34

• heat exchanger 52

• Efficiency
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Brayton Cycle
• Efficiency
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Pr % (=1.4)

2 18

10 48

30 62


