

Engine Nozzle Requirements

- · Accelerate flow with
 - minimum po loss
 - low noise
- Sized to pass max required \dot{m}_{corr}
- Mix core and bypass streams (if turbofan with mixed nozzle)
- · Allow for thrust reversing
- · High performance
 - allow for thrust vectoring
 - permit afterburner operation without affecting main engine operation
 (⇒ variable area nozzle)
- · Minimal cost, weight, drag
- Long life, good reliability, low maintenance

Engine Nozzies -1 Copyright © 2006, 2017, 2020 by Jerry M. Seltzman. All rights reserved. AE4451

Nozzle Mixing

- · Lobed or chevron features often used to rapidly mix
 - core and bypass flow
 - nozzle exhaust and ambient air (flowing around nacelle)
- Can improve thrust and lower engine noise
 - noise scales nonlinearly with peak jet velocity (shear layers)

AE4451

Engine Nozzles -2 Copyright © 2006, 2017, 2020 by Jerry M. Seitzman. All rights reserved

Nozzle Sizing

 For converging nozzles, nozzle exit area must be large enough to pass required mass flowrate

$$A_{exit} = \dot{m}_{corr, \max} fn(\gamma, MW, M_{exit})$$

- for turbojets, low bypass turbofans nozzle likely choked
 - $M_{exit} = 1$
- For C-D nozzles
 - similar approach for sizing throat $(M_{th} = 1)$
 - exit area to achieve near p_e = p_a

Engine Nozzles -6 Copyright © 2006, 2017, 2020 by Jeny M. Seltzman. All rights reserved AE4451