Rocket Propulsion

Heat Transfer in an
LRE TCA
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Thrust Chamber Assembly (TCA)

C.C. + nozzle Ignition Giipe e, Head End

— exposed to high ~
temperatures and high
pressures

To minimize weight, TCA
walls must be relatively light 7

- - . CombustjQ), yu.
— thin but with sufficient™, 5 N

strength at high (C.C.) e 3 Cooling
temperatures to 7
withstand structural loads

— generally requires Diverging

cooling Nozzle

Chamger stittening bonds —

Injector

FIGURE $-1. Construction of a regeneratively cooled tubular thrust chamber using a
kerosene-type fuel and liquid oxygen, as originally used in the Thor missile. The nozzle
inside diameter is about 15 in. The sea-level thrust was originally 120,000 Ibf, but was
uprated to 135,000, then 150,000, and finally to 165,000 Ibf by g the flow and
chamber pressure and strengthening and modifying the hardware. The cone-shaped exit
cone was replaced by a bell-shaped nozzle. Figure 8-9 shows how the fuel flows down
through every other tube and returns through the adjacent tube before flowing into the N fuet retun
injector. Figure 8-4 shows the flow passages in a similar injector. (Courtesy of The  Drain phog — N0l mando
Boeing Compuny. Rocketdyne Propulsion and Power.) )
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TCA

Coollng Approaches

Ways to keep TCA wall from
getting too hot, lower strength

Regenerative Cooling

Coolant now mo mjectors

Regenerative Cooling

— flow cold fluid (propellant)
along outside of wall

Ablative Cooling
— vaporizing thin layer of

wall material on inner side
absorbs lots of energy

— hot outer wall radiates

«—— Propelant or coolant fiow
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Ablative Cooling
Vaporized material
% ablative
______ Center
line
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foradian'on
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energy (to environment)
Film/B.L. Cooling
— inject cold fluid
(propellant) along inner
wall to shield it from hot

Film/Boundary Layer Cooling
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Radiation cooled
region
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TCA Cooling Approaches
*  What needs most cooling? —— Regenerative Cooling
— C.C.: hottest, highest p i i
— nozzle throat: hot and [
highest heat flux (Q/4) Ablaivs Cooling
° LRES Vaporized material
Cormts et
— usually employregen. | K| _ | ¥ T Caner
cooling for most of TCA Gistontingue
— film cooling often used in s /PP
.. radiation
c.c. near injector plate 4
* SRMs E I - —I ------ -
. . . ot:oml:usllon gas
- prlrrll_anly use ablative Fiim ] Boundary Layor Cooling
cooling . IU“:‘n“ ! Liquid/vapor | Radiation cooled
— propellant in C.C.; throat egon |
region, e.g., graphite E’T\\/
qut strpping ™ Dtusion it core _ Center
+ Smaller in-space systems o
might rely on radiation cooling ™** mmm,wmo veattow W01 Erom Hlumble
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* Heat transfer is transport of “thermal” energy between “systems”;

3 modes )
. LowT HighT
1. Conduction q=0IA=-kVT v 9

— molecules “collide” with each other; “fast”/hot

)
Q%O’ zobgq

molecules transfer energy to “slow”/cold ones (PN ete s
a

[ ge)
— occurs in all substances
2. Convection g=h(T-T) Q
— conduction occurring alongside transport ‘
of mass due to flow
— occurs in “fluids”, usually to or from solid
3. Radiation
— energy transported as electromagnetic
waves/photons

— substances can absorb, emit, AN
~m M

wWA

wWA

transmit and reflect radiation

— hot objects emit more and at higher frequencies "~
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_Flange connection
to injector
outlet annylus

Vulcain (LH2/LOX) example
— liquid H, used to cool walls

— flowed through closely arranged small
tubular cooling channels within
combustion chamber wall
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Regenerative Cooling: Heat Transfer ,

« Heat transfer occurs P > %
— from hot gas to TCA wall W \
* Thg_ﬂ—wg i K

I
!
. - . T
 convection + radiation ! I -
— through TCAwall__ i ' \
. ng_)Twc cooling channel i -“}: ) §

* conduction el
— from TCAwall =
to low T coolant
¢ Twc_)TL
* convection

* (can usually
neglect radiation) ogasion S fie
from Hill and Peterson “'x_y after Frohlich et al., AIAA93-1826
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Heat Transfer Analysis (
» Convection + wall conduction ‘& ;ﬁ
= conjugate heat transfer w \
« Advanced analysis methods, H \

e.g., CFD and FEA
« Simplifying assumptions for

1st order analysis ~ §™™" =S
_1d s BN
* large Hi/t,, Twy
« HW >1 T
— steady

AF4451




« 1-d, steady analysis, ——
no backside (rad.) cooling |
Q= Al (T, -To)ra kA, T -nA M -T)E
— h = convective heat transfer coeff.
k, = thermal conductivity of wall

I
I
]

* If side walls “thin”, t, << W . [t
L N

— ( = heat flux (per unit area)
« For uniform (composition)

walls and 1-d aT, _
(1V.31) Ydx T,
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Slmp|lfled Heat Transfer Analysis

* Solution
— heat flux from combustor

Thg

—TL+qr/hg

(1V.32)

4= Uh, +t, /k, +1/h,

— hot-side wall temperature
ng =Thg _(q_Qr )/hg
— if radiation to wall is small

L

* no particles (hon-sooting, e.g., H,/O,)

(1V.33)

T, =T, -
M 1t hy K, +hy /b

Thg - TL

Want this term to be large = cooler wall

4 rights reserve
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Reducmg Hot Wall Temperature

Low temp. coolant (T,) H Tog —To

— in combustion chamber, L+ 6y [k + g /1y
Thg>> TL (€.9., 3000K vs 100-250K), so small
changes in T, have small effect

wall material (kw) Nickel Super Alloy 20-30 >500 @ 600°C
Copper 350 70 @ 20°C
* Thin walls (t,)
. - t pO cc CC /Zamax
— structural limits Grnay = Maximum allowed

wall stress (< o)

Low ratio hy/h,
— reduce rate to hot wall, increase from cold wall

AF4451
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Heat Transfer Example

« Given:

— location within TCA where hot propellant gas
is at 2500 K; coolant flow at 230 K; TCA wall
of thickness 500 um and thermal conductivity
250 W/mK; hot-side heat transfer coefficient of
9.0 kW/m2K; hy/h. = 0.17

« Find: (®) coolant
. outer T ?
— inner and outer wall b eoo
temperatures N poHm
* Assume: &) hot gas

— steady, 1-d analysis okay
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Heat Transfer Example

* Analysis:
— ng =589 K
— T, =595 K 230K
P % 555K 678K  forhd, T,T:
thin walls, 1gn con UCtIVIty h./h, =0.17—0.25
= small AT across wall 589K 710Kk 9t
2500K
AF4451
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Heat Transfer Coefficients
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Convectiv

» So to solve heat transfer problem need
information on the convective heat transfer

coefficients T /<—>v/___7fi
« Recall, convective heat iQ/ A !
transfer )

— due to fluid moving over surface

— thermal boundary layer develops, e = Zae (RE,)
similar to momentum boundary layer Rreynolds

number

« Conv. heat transfer coefficient h:h(Rez,ﬂPr)

— since Re, « z
T,, varies downstream

Prandtl number

Thermal

Pr= v/a/diffusivity

Kinematic
Viscosity

a=k/pc,
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Convectlve Heat Transfer Correlations

» Heat transfer coefficients

X —_— T,
for specific geometries T K/I—QTA—]L'
| ]
T,(2) ¥

typically given in terms of
correlations of related parameters

+ Stanton number| g N | SREES
(1Vv.34) puc, freestream conditions
* Nusselt number Nu _ i :NU_St“_g_St“_gK
Tk . a vV a
Dimension,
« Example correlation for ~ ©9-* Nu = StRe, Pr
flat plate, laminar (subsonic) flow (1V.35)

St =0.332Re, Y2Pr2® = Nu, =0.332Re,"*Pr"®
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» Correlations (semi-empirical)
available for rocket (LRE) type
geometries and conditions (e.g.,
compressible flow)

« Hot gas side, Bartz correlation* !

Nu, oc Re**Pr®*
™ diam of TCA at given axial location -"[t _____
« Coolant side, typical to use I
correlations for fully-developed
turbulent flow in a channel
Nup, oc Re**Pr" n=033037

Dy, =2HW/(H + W) q
for rectangular channel r

hydraulic diam of cooling channel

N *D.R. Bartz in Advances in Heat Transfer,
‘Copyright ©2012, 2017, 2020-2021, 2024 by Jerry M. Al ighs resenved. VOI 2’ Hartnett and |rVine Ed (1965) 4[4451
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Su mmmary of Heat Transfer Analysis

* From IV.31-33 (negl. rad.)
q _ Thg _TL —k (ng _Twc)
Uh, +t,/k,+h "t
Ty =Ty - w1t
M 1at,hy /k, +hy /hy

W

* If fluid temperatures (Tyq, T,)
wall properties (t,, k,) and h
values known

— can get hot and cold side
wall temperatures
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General Trends ,
T, —T.+4,/h,

+ Combustor walls typically made of thin q=
material with high thermal conductivity hy +t,/k, +1/h,
(Tw - Twc) << (Thg - TL) Two =Thg — Thg it
* Typical hy/h, ~ O(10-2-10-") ¢ 14t,hy /K, +hy /h,L

» High h_will reduce wall T'’s

— fins, roughness,
small coolant tubes h, o mL/Dl'8
or more coolant flow

— tends to lower T,’s without large

=
.

change in O \

+ Low hywill decrease O to wall, h, \
so also reduce T,’s [ ﬁ\ N\ \

— smooth inner combustor, keep i {tw \\\&_\\
boundary layer thick e — N

— primary influence on Q (w/o rad.) T,
9
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