

IV. Rocket Propulsion Systems

A. Overview

by J. M. Seitzman for AE 4451 Jet and Rocket Propulsion

Rocket Overview -1 Copyright © 2003,2018, 2020 by Jerry M. Seltzman. All rights reserved. AE4451

Rocket Propulsion System

Definition: device that provides thrust to a vehicle by accelerating some stored matter (the propellant) and exhausting it

 in rocket propulsion Bussard (unlike air-breathing Ramjet engines), the propulsion system carries all its own propellant

ScienceSource

Saturn V, Apollo 8

AE4451

Rocket Overview -2 Copyright © 2003,2018, 2020 by Jerry M. Seitzman. All rights reserve

Rocket: Performance Parameters

- Thrust
 - important when there are minimum (or maximum) allowable accelerations, e.g., launch in gravity field
- Impulse $\int F(t)dt$
 - measure of time integrated performance (to change momentum of vehicle)
- Other important issues
 - structural weight, size/shape, complexity, reliability, hazards, throttling, reuse,...

Rocket Overview -3 Copyright © 2003,2018, 2020 by Jerry M. Seitzman. All rights reserved.

Examples: Pressure Rocket

- Cold Gas Thruster
 - ⇒cold gas (N₂, N₂O,...) stored at high pressure with thrust provided by acceleration through nozzle

Vacco.com

- Propellant=Energy source (thermal energy)
- Feed system: piping from storage to nozzle
- Energy conversion: none
- Accelerator: nozzle (thermal to kinetic energy)

Rocket Overview -5
Copyright © 2003,2018, 2020 by Jerry M. Seitzman. All rights reserved.

AE4451

Examples: Chemical Rocket

- Bipropellant: LH2-LOX (H₂/O₂)
 - ⇒react pressurized H₂ and O₂ in combustion chamber, nozzle exhaust
 - Propellant=Energy source (chemical energy)
 - Storage: liquid (cryogenic) tanks

RS-25 (SSME) NASA

- Feed system: liquid pumps and piping
- Energy conversion: chemical to thermal energy (combustion)
- Accelerator: nozzle

Rocket Overview -6 Copyright © 2003,2018, 2020 by Jerry M. Seltzman. All rights reserved

Examples: Electrical Rocket

- Ion Engine
 - ⇒ionize neutral gas (Xe); ions accelerated by E field; ions recombined with e-
 - Propellant: neutral gas
 - Energy source: e.g., nuclear or solar
 - Energy conversion: nuclear/ solar to electrical
 - Accelerator: high voltage electrostatic field

NASA

AE4451

Applications

- **Space Propulsion**
 - launch: from "planetary" body to orbit
 - orbit Insertion: from launch orbit to mission orbit
 - maneuvering: maintain or change orbit or trajectory
 - attitude Control: orientation of vehicle
- Aircraft Propulsion
 - high thrust/acceleration (sustained or boosters)
 - high speed flight (> ramjet/scramjet capability)

Rocket Overview -8 Copyright © 2003,2018, 2020 by Jerry M. Seltzman. All rights reserved

Chemical Rockets

- Common Applications
 - usual choice for high thrust rockets, e.g, launch, orbit change, aircraft propulsion
 - also used for maneuvering and attitude control
- Propellants
 - monopropellants: exothermic decomposition of single species (liquid)
 - N₂H₄, H₂O₂, N₂O, ...
 - bipropellants
 - RP-1/O₂, H₂/O₂, CH₃(NH)NH₂/N₂O₄

- ...

Rocket Overview -9
Copyright © 2003,2018, 2020 by Jerry M. Seitzman. All rights reserve

AE4451

Chemical Rockets (continued)

- Propellant Storage
 - Gas rockets: fuel/oxidizer stored as gases requires large storage volumes
 - Liquid rockets: stored as liquids more complex but high impulse
 - Solid rockets: propellant is solid lower impulse but simpler
 - Hybrid rockets: usually solid fuel+liquid oxidizer
- Motors vs. Engines
 - Motor = propellant stored inside comb. chamber
 - Engine = storage outside combustion chamber

Rocket Overview -10 Copyright © 2003,2018, 2020 by Jerry M. Seitzman. All rights reserver

Other Rockets: Applications

- Pressure (cold gas)
 - attitude control + maneuvering: reduced thrust as pressure used up, rendevous
- Electrical
 - resistojet thrusters
 - arcjet thrusters maneuvering + attitude control
 - ion engines/Hall thrusters space propulsion
- Future (?) systems
 - nuclear thermal: like chemical rockets with nuclear-based heat addition, high thrust
 - magnetoplasmadynamic and other electrodynamic devices, high impulse

Rocket Overview -11 Copyright © 2003,2018, 2020 by Jerry M. Seitzman. All rights reserved AE4451

Non-Rocket Propulsion for Space Applic.

- Combined Cycles: typically combine airbreathing with rocket cycles for single-stage to orbit (SSTO)
- Solar sails: use momentum from solar radiation
- Magnetic sails: use magnetic fields
- Tethers: conducting material moving through EM fields can produce currents/voltages or passing current through tether can produce forces
- (Gravity assist: sling shot effect)
- Warp drive, Cannae Drive

Rocket Overview -12 Copyright © 2003,2018, 2020 by Jerry M. Seltzman. All rights reserve