Thermodynamics Properties

- **Property**
 - any characteristic of a system which can be quantitatively evaluated and which is related to energy of system
 - examples: \(m, V, E, p, T, S, H, ... \)

- **Independent Properties**
 - Question: How many intensive properties does it take to define a unique state for a known substance?
 - Answer: Two - for simple compressible substances
 - useful work done only by compression/expansion; no E&M fields, no liquid surface tension,...
 - So if you know two properties, can predict the rest

State Equations

- Relate TD properties
 - e.g., \(Y = Y(T, p) \)

- **Examples**
 - Gibbs equation (from 1st and 2nd Laws)
 \[
 ds = \frac{de}{T} + \frac{p}{T} \, dv \quad \text{(II.5)}
 \]
 - caloric equations of state
 \[
 h = h(T, \rho)
 \]
 \[
 e = e(T, \rho)
 \]

- **Simplify by restricting ourselves to perfect gases**
 - obey **Perfect Gas** relation
 \[
 p = \rho RT
 \]
 \[
 \text{or}\quad pv = RT \quad \text{(II.6)}
 \]
Perfect (Ideal) Gases

• Thermal (virial) state equation

 \[p = \rho RT = \frac{\rho R}{M}T; \quad \overline{R} = 8.3143 \text{J/mol} \cdot \text{K} = 8.3143 \text{kJ/kmol} \cdot \text{K} \]

 \[= 1.9855 \text{cal/mol} \cdot \text{K} = 1545.3 \text{ft} \cdot \text{lb} \cdot \text{s}^2/\text{lb mol} \cdot \text{ft} \]

• “Energy” state equations (Specific Heats)

 \[\gamma \equiv \frac{c_p}{c_v} = \frac{v}{R} = \frac{1}{1 - \frac{R}{c_p}} \]

 \[= \frac{c_p}{R} = \frac{c_p}{c_v} \]

 \[\gamma \equiv \frac{c_p}{c_v} = 1 + \frac{\gamma - 1}{c_p} \]

 \[\overbrace{\gamma}^{\text{bar means per mole}} \]

 \[\gamma_{\text{atom}} = \frac{5}{3}; \quad \gamma_{\text{diatom}} = \frac{7}{5} \rightarrow \frac{9}{7}; \quad \gamma_{\text{poly}} = \frac{7}{5} \rightarrow 1; \quad \text{Temperature (K)} \]

Perfect Gas – Entropic State Eq’n.

• Gibbs Eq. \[Tds = de + pdv = de + pdv + (vdp - vdp) \]

 \[= de + \frac{d(pv)}{\gamma} - vdp \]

 \[= dh - vdp \]

 \[ds = dh \frac{v}{T} \frac{dp}{\gamma} \]

 \[= \frac{c_p(T)TdT}{R} \frac{dp}{p} \quad \text{for a P.G.,} \quad dh = c_p dT \]

 \[p\nu = RT \]

 From state 1 to state 2

 \[\int_{s_1}^{s_2} ds = s_2 - s_1 = \int_{T_1}^{T_2} \frac{c_p(T)TdT}{R} \frac{dp}{p} = \int_{T_1}^{T_2} \frac{c_p(T)TdT}{R} \frac{dp}{p} - R \ln \frac{p_2}{p_1} \]

 \[s_2 - s_1 = \left[\phi(T_2) - \phi(T_1) \right] - R \ln \left(\frac{p_2}{p_1} \right) \]

 \[\text{fn of T only} \quad \text{fn of p only} \]
\textbf{p-T-s State Equation}

\[s_2 - s_1 = \Delta s_{12} = \left[\Delta \phi_{12} \right] - R \ln \left(\frac{p_2}{p_1} \right) = \frac{\int_{T_1}^{T_2} c_p(T) \, dT}{T_1} - R \ln \left(\frac{p_2}{p_1} \right) \]

Cal. Perf. \[\Delta s_{12} = c_p \ln \left(\frac{T_2}{T_1} \right) - R \ln \left(\frac{p_2}{p_1} \right) \] (II.9)

- **Pressure ratio**

 \[\frac{p_2}{p_1} = e^{(\Delta s_{12})/R} \]

 \[\frac{p_2}{p_1} = \left(\frac{T_2}{T_1} \right)^{c_p/R} e^{-\Delta s_{12}/R} \]

 \[\frac{p_2}{p_1} = \left(\frac{T_2}{T_1} \right)^{c_p/R} \]

 \[\Delta s_{12} = \gamma - 1 \]

 (II.10)

 must be absolute \(p, T \)

\textbf{State Diagrams}

- Useful to be able to visualize/graph state relationships

 - in engine (cycle) analysis, \(T-s \) an important diagram

 \[T \text{ds} = c_p \text{dT} - v \text{dp} \]

 \[dT = \left(\frac{T}{c_p} \right) ds + \left(\frac{v}{c_p} \right) dp \]

 \[\begin{align*}
 \frac{\partial T}{\partial s} & = \frac{\partial T}{\partial p} \\
 ds & + \frac{\partial T}{\partial p} \, dp \\
 >0 & \text{ w/ } T \uparrow \quad >0
 \end{align*} \]

 \(s \uparrow \) for \(T \uparrow \)

 @ constant \(p \)

 \(T \uparrow \) for \(p \uparrow \)

 @ constant \(s \)