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Rocket Propulsion

Thrust Coefficient, 

Characteristic Velocity and

Ideal Nozzle Expansion
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Thrust Coefficient

• Define  thrust coeff.

• Also steady thrust 

• Can combine with ideal

nozzle results 

(IV.10,11)
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• Ideal thrust coefficient is only function of

– ,  (=Ae/At), pa/po

– recall pe/po = fn()

• Note: c  fn(To, MW)

• Thrust coeff. depends mostly on pressure 

distribution in thrust chamber

– from normalizing thrust by poAt

Ideal Thrust Coefficient
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Characteristic Velocity

• Can define similar parameter to characterize 

combustor

– characteristic velocity

• Can also write ideal characteristic velocity

– using (IV.11)

• Note: c* = fn(To, MW, )

• Also 
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a propellant combustion property

(IV.16)



3

Thurst Coefficient-5

Copyright © 2005,2006,2017-18, 2020 by Jerry M. Seitzman. All rights reserved. AE4451

Liquid Bipropellants - Examples
 

Oxidizer 

 

BP/FP 

(C) 

 

Fuel 

 

BP/FP 

(C) 

Combustor 

Temperature 

(K) 

Bulk Avg. 

Density 

(g/cm3) 

 

C* 

(m/s) 

 

Isp 

(s) 

O2 -183/-218 H2 -253/-259 3010 0.3 2420 390 

O2  RP-1 ~210/-50 3680 1.0 1810 300 

O2  UDMH 63/-58 3600 1.0 1860 310 

O2  NH3 -33/-78 3080 0.9 1800 295 

F2 -188/-220 H2  3960 0.5 2560 410* 

F2  Hydrazine 113/1.4 4680 1.3 2210 363* 

N2O4 21/-12 MMH 86/-53 3390 1.2 1750 288* 

N2O4  RP-1  3450 1.3 1650 275 

Optimum performance; 1000psia (6.94MPa) combustor; pe=pa=14.7 psia (1 atm)                                     

UDMH=Unsymmetrical dimethyl hydrazine (CH3)2NNH2   Hydrazine=N2H4   

MMH=Monomethyl hydrazine CH3NH-NH2                        NH3=Ammonia   

 *Hypergolic Mixture (ignites on contact) 

ueq

(m/s)

4020

3830

2940

2700

• generally c* < ueq

 because with well 
designed system c > 1 
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• Re-examine (IV.13)

• 1st term = contribution to thrust by

exit velocity/momentum

• 2nd term = contribution to thrust by

exit pressure

Ideal Thrust Coefficient – Mom. vs. Press.
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Comparison of Terms
• Compare terms for different nozzle designs
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Comparison of Terms
• Look at exit versus ambient pressure
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Effect of Ambient Pressure on c

• Can get 

higher thrust 

coefficient by:

–reducing 

ambient 

pressure

–increasing 

rocket 

pressure  
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Normalize by Converging Nozzle c

• Large  needed for 

optimum c for 

small pa/po

•  for optimum c (or 

Isp) varies with 

altitude (pa)

– for po=1000 psia

– pa/po 

0.015

0.001

– performance at 

multiple altitudes?
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Flow Separation

• For p in nozzle enough below 
pa, flow (b.l.) separates

– occurs in over-expanded 
operation and before 
normal shock would enter

– expansion essentially ends 
at separation (lower )

• Summerfield* found oblique 
shock enters nozzle for 
Kpa/pe,sep 2.54

 pe/po  2540% pa/po

• Kalt and Bendall** another 
empirical criteria (one of 
many)

=1.2

Separated Flow 

Region

Normal shock at exit
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**J. Spacecraft and Rockets 2 (1965)

*Summerfield et al., Jet propulsion 24 (1954)

psep

(IV.17)

(IV.18)

Thurst Coefficient-12

Copyright © 2005,2006,2017-18, 2020 by Jerry M. Seitzman. All rights reserved. AE4451

Flow Divergence

• Generally flow leaving a rocket nozzle

is not directed in axial direction

– would require excessive 

length nozzle 

• Thus some of the momentum increase 

produced by the nozzle is not aligned 

with nozzle axis  thrust reduction/loss

• For uniform |ue| can apply correction factor 

  eaee Appum  

ue

(IV.19) will reduce c
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Other Nonideal Effects in Nozzles

• Viscous effects

– boundary layers and boundary layer-shock 
interactions

– can use flow solvers or analytic approximations to 
estimate these effects

• Losses due to (weak) shocks within nozzle

• Heat losses (especially cooled nozzles)

• often heat loss small fraction of flow energy (thermal+kinetic)

• Nozzle erosion (throat)

• Multiphase flow (more prevalent with solid motors)

• Noncalorically perfect and other real gas properties

• Nonequilibrium flow


