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Turbines

Overview
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Turbine Overview

• Configurations (axial, radial, mixed), analysis and other 
issues similar to compressors

• Compared to compressors

– higher loading ho/U
2 (or specific work) and pressure 

ratio per stage - why?

• favorable 
pressure gradient

– usually much higher
temperature inlet

• higher temperature
materials (strength)
and/or blade cooling

Science, AAAS
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Turbine Analysis

• Similar to compressor analysis

– Euler turbomachinery 
equations still hold, 
e.g., V.5,6

– use cascade flow and pitch(mean) line 
approach for modeling c

– essentially same equations and approach as 
compressor, but new state numbering order

• 12 stator=nozzle

• 23 rotor
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Turbines

Cascade Analysis and Turbine 

Characteristics (Maps)
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Turbine Cascade Analysis
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Mechanics and Thermodynamics of Propulsion, Hill and Peterson

same form of blade loading eqn

for turbine as compressor (1,22,3)

• Let rotor move upward (flip sign
convention); again fixed r, ui=U

• Therefore for rotor, and
constant cz
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Stage Pressure Ratio

• For adiabatic turbine with TPG/CPG
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• Stage pressure ratio still depends on

1. = f(U= r, c)

2. blade M=f(r, To1)

3. st

>1 as written

<0 for turbine

(V.22)
Mb
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Axial Turbine Maps

• Important observations:

1. Larger stage pressure ratios 
(and possibly efficiencies) 
then compressors

2. Efficiency remains high for 
larger range of p ratios 

3. For fixed RPM, larger 
pressure drop at higher 
mass flowrate

– more work extracted per 
unit mass

4. Turbines (nozzle) can run 
choked (max. m

.

c)

adapted from Mechanics and Thermodynamics of Propulsion, Hill and Peterson
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Turbine Example
• Given: 

– combustor exhaust with To=1800 K
– 1st stage of turbine with cz=447 m/s and nozzle 

producing 54 exit flow angle
– rotor with blade speed of 526 m/s at pitchline (rm=0.45 

m) and flow exit angle of -49 in blade reference frame 

• Find:

1. Specific work produced by turbine stage and 

2. Flow angle entering rotor in rotor ref frame

3. To exit

4. N (rpm) 

• Assume:

– axial velocity constant through stage

– constant radius pitchline

– combustion products TPG/CPG with MW 28.9, =1.33



5

Turbomachinery -57

Copyright © 2014,2015, 2018, 2020, 2021 by Jerry M. Seitzman. All rights reserved. AE4451

Turbine Example

• Specific work, ?

• 2?

Nozzle         Rotor

U=526 m/s
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
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Turbine Example

• To3 
= ?

• N?
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Turbines

Blade Design and 

Compressor-Turbine Matching
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Blade Design

• We have TWO blade 
parameters to design

1. rotor trailing edge angle (~3)

2. nozzle trailing edge angle (~2)

– assume 1 set by upstream device

– 2 can be found from 2 and 
using geometric relations (like 

V.11) and ref. frame change, 
e.g.,

Mechanics and Thermodynamics of Propulsion, Hill and Peterson

2tan
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3tan
3
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33
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Blade Design: Degree of Reaction

• One choice for the two design variables: 

1. 

2. M2,rel

– an approach we might have

used for compressor stage

• Another choice for the 

two design variables are: 

1. Degree of reaction, R

2. Stage exit condition, 3

Mechanics and Thermodynamics of Propulsion, Hill and Peterson

 23 tantan1  
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Degree of Reaction

• Recall

– allows us to distribute load (static pressure 

change) between rotor and nozzle (or stator)

– how to relate static enthalpy change to 

azimuthal velocity changes?

• KE !!

– for stationary blade, no work done

• e.g., nozzle blade 

stagerotor hhR 

KEhho  0

2v2 hho

    22 222222

12 222111 rzrz cccccchh  
  222

21  cc 

if cz constant and 
negligible cr (so axial turbine only)
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Degree of Reaction (Turbine)

• Rotor blades??
– are “stationary” in rotor’s 

reference frame

• Reaction
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Impulse Turbine

Mechanics and Thermodynamics of Propulsion, Hill and Peterson
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Impulse Turbine

Mechanics and Thermodynamics of Propulsion, Hill and Peterson

• So for impulse turbine,
blade loading coeff.

• Relates blade loading to 
nozzle exit angle

• From  equation, rotor blade
angles given by
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Impulse Turbine

Mechanics and Thermodynamics of Propulsion, Hill and Peterson

• To get largest power per 
unit mass flow rate  large 2

– tends to produce high 
velocities and po losses

– practical limit, ~70

• Further possible constraint

– no exit swirl (c3
=0)
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50% Reaction Turbine

• R  0.5

– balanced p drop across stage

– if no exit swirl
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but usually higher efficiency
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Turbine Degree of Reaction Summary

• Can use degree of reaction to help lead 

design choices

– lower degree of reaction will tend to 

produce more power per stage

• for same blade speed, stage inflow angle, 

stage outflow angle

– balancing pressure drop between nozzle 

and rotor will tend to increase turbine 

efficiency
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Compressor-Turbine Matching

adapted from Mechanics and Thermodynamics of Propulsion, Hill and Peterson

Corrected Mass Flowrate Corrected Mass Flowrate

• Need to “match” compressor, turbine on same spool
– important part of design/operational analysis

• Steady operation “matching” 
considerations

1. N (RPM)

2. ሶma vs. ሶmt 
(incl. b, f ) 

3. ሶWt = ሶWc
+ auxiliaries, 
shaft losses

• Determines how 
Prc, RPM, etc. 
vary with throttle 
setting and 
flight conditions

Nc,t

Nc,c
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Turbines

Stresses and Blade Cooling
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Turbine Stresses/Operational Limits

• Turbine blades 
experience large 
stresses: bending, 
thermal, centrifugal 
(rotor: 104-105 g) 

• Materials exhibit 
significant loss of 
strength, enhanced 
creep at high T

– low strength at 
modern engine To4

(high ST, th)
To4 >1400C
(2500F)

Mechanics and Thermodynamics of Propulsion, Hill and Peterson
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Turbine Inlet Temperature Evolution

www.virginia.edu/ms/research/wadley/high-temp.html

• Solutions

– high 
temperature 
materials

– blade cooling

– TBC (thermal 
barrier 
coatings)

• Cooling usually 
limited to 1st or 
few turbine stages 
after combustor

Ni superalloys

single crystal 
super alloys

Film cooling

to minimize amount of bleed air required
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Turbine Blade 

Cooling
• Usually use 

compressor (bleed) 
air in aircraft engines

• Configurations

– internal passages 

– external
• film cooling

• tip cooling

• Heat transfer 
designed to 

– focus on “hot” 
spots and initial 
stages

– minimize stress 
concentration

Gas Turbine Theory, Cohen, Rogers and Saravanamuttoo
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Turbine Blade 

Cooling

• Rotor and 

nozzle cooling 

configurations

Gas Turbine Theory, Cohen, Rogers and Saravanamuttoo
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Introduction to Turbine Heat Transfer Analysis
 

vhot (=c or w) 

AQ

 zTouter

 zTinner

z  

x  

x  

• Consider a simplified 
version of a (half) turbine 
blade 

• Inner cooling only

– neglect film and tip cooling for now

– hot gas (combustor products)
flows over outer surface

– “cold” gas (bleed air) flowing
through inner passage(s)

– turbine blade “wall” in between

• Will analyze this simplified heat transfer problem to 
understand heat transfer and blade cooling issues
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Conduction Heat Transfer

• Start with description of 
conduction heat transfer 
through the wall

– assume one-dimensional

– top side of wall uniform temp. (Touter)

– bottom side of wall uniform temp. (Tinner)

• Energy equation

– differential CV

– steady

• Model for ሶQ

– Fourier’s Law (1d)

 

AQ
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innerT

z  

x  

x  

 

inQ

T dx

outQ

  outin QmcdT
dt

d
Q  

outin QQ  

dx

dT
k

A

Q
q 




Thermal 
Conductivity
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Conduction and Thermal Conductivity

• For steady, uniform material

– T gradient is 
a constant

– so T varies linearly through wall

• Thermal conductivity

– insulators like ceramics have
much lower conductivities than
metals

• so TBC will produce much lower heat 
flux for same temperature gradient

k

q

dx

dT 


x

TouterTinnerT
Material k (W / mK) at 1000C

Nickel Super Alloys 20-30

Ceramic TBC’s 1-2

 

AQ
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innerT

z  

x  

x  

 
x

TT
kq innerouter






(V.30)

like (IV.31)

Turbomachinery -78

Copyright © 2014,2015, 2018, 2020, 2021 by Jerry M. Seitzman. All rights reserved. AE4451

Effect of Adding TBC Coating

• Example Ni alloy with

• Now add 500m TBC

– for same Touter, Tinner

dx

dT
kq 

x

TouterTinnerT

 

q
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xalloy  

 q
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xTBC  
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2
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280
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m
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K
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W





TBCalloy qq  
   
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alloy

TBC

midouter
TBC

x
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k

x

TT
k











TBCTBCalloyalloy

TBCTBCinneralloyalloyouter

mid
kxkx

kxTkxT
T






xalloy5mm

kalloy=25W/mK

Touter=1400K

Tinner1120K

KTmid 1225
2

525
5

105
25

m

kW

mm

K

mK

W
q 

midT
thin coating leads to much lower metal T … much less 
heat transfer… and over half of  T occurs across thin TBC

 

 

xTBC0.5mm
kalloy=1.5W/mK
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Convective Heat Transfer

• Convective heat transfer 

between gas flows and 

blade walls (including 

boundary layer development)

• As in rocket TCA analysis

– h=h(Rez,Pr)

– so Twall varies downstream 

– e.g., for laminar flow over flat 
plate (though turbine blades are 

not flat, and flow not laminar)

 
v 

AQ

 zTwall

z  

x  
,gasT

 wallgas TThq  ,


Convective Heat Transfer Coeff.
Prandtl number

Pr
thermal 

diffusivity

pck  

3221
332.0

v









PrRe
c

h
St z

pg g


3221
664.0

v









PrRe
c

h
L

pg g
Stanton 

Number

averaged over full length of plate (L)

(V.31)

(V.32a)

(V.32b)
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Convective Heat Transfer - External

• Example

hot air

• Analysis chord

c1.8cm    p=12bar

Tgas=1700K

Twall1400K 

v=350m/s

Pr=0.8  v=2.5510-5m2/s

 
v 

AQ

 zTwall

z  

x  
,gasT

  21

1

32

1 v332.0



 mmpgmm RePrch

g


1


 




T

p
c

gpg



z
Rez

v


Km

kW

Km

kW
2

5.0667.0

2
7.3137008.01130332.0 








 

  2

21 1.1140017007.3 mMWK
Km

kW
q mm 

 
5.0

25

667.0

1055.2

001.0350
8.0350

128.1

28.1

1700

1200
332.0





























sm

msm
sm

K

kPa

Km

kW
hh cx 2

8.12  

2525 mkWqtotal 

highest heat loads close to leading edge of blades, will require more cooling
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Turbine Blade Analysis

• Comparing the 2 examples

– conduction through TBC-
coated alloy =525 kW/m2

– convective heat transfer into
blade =525 kW/m2

• So together they could represent a single, 
steady-state problem

• Next step is to investigate bleed air cooling 
requirement 

 

alloy  

TBC  

350 m/s 1700K  

1400K  
1255K  

1120K  

525 kW/m2  

throughconductioninconvection qq ,,
 
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Cooling – Convection Internal Flow 

• In pipe/channel flow can’t 
assume infinite flow

– boundary layers meet and central flow 
changes with axial distance

• Now

• Need h expression for convection into channel

– turbulent flow, profile still developing

– averaged over channel length

 

v 

Q

innerT

coolT

Q T 

x 

 coolantbulkinner TTh
perimeterL

Q

A

Q
,




 Bulk avg. temp.

055.0

318.0036.0 









L

d
PrRe

d

k
h d

(V.33)
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Turbine Blade Analysis
• Using information in previous examples  +

1) blade height/chord = 2

2) 2mm sq channels spanning 80% of chord

3) negligible spacing between channels 

4) 500K, 45 m/s bleed cooling air (Pr=0.8,
p=14 bar, =2.710-6 m2/s)

 bleedinner

blade

cool TTh
A

Q


4

8.0

297.1 mkWh   
vhot (=c or w) 

AQ

 zTouter

 zTinner

z  

x  

x  

vhot (=c or w) 

 zTouter

 zTinner

2244 mkW
only ~ ½ of heat load

need to reduce heat load 
or blade T will be higher

must include film cooling
due to air exiting blade

 

alloy  

TBC  

350 m/s 
1700K  

1400K  
1255K  

1120K  

525kW/m2  

h
ei

g
h

t

from (V.33)

244kW/m2

500K

Turbomachinery -84

Copyright © 2014,2015, 2018, 2020, 2021 by Jerry M. Seitzman. All rights reserved. AE4451

Modeling Turbine Blade Cooling

• Generally the turbine blade cooling analysis 

problem is approached as a simultaneous 

solution of the conduction and convective 

heat transfer issues

• Include effects of

– accelerating flowfield of gases flowing 

over blades

– non-1d geometry of blade

– film cooling, boundary layers changes 

due to “blowing” from air exiting holes


