Steady Nozzle Flow

- What do (should) you know about CD nozzle from basic gasdynamics (nonreacting, cpg, 1-d)? e.g., vs. back pressure
 - If $p_b/p_o < p_{sub}/p_o$, choked flow (sonic throat, $M_t=1$)
 - Lowering p_b/p_o moves shock from throat to exit
 - If $p_b/p_o < p_{shock}/p_o$, $M_e>1$ and isentropic flow in nozzle
 - $p_b=p_{sup}$, perfectly expanded exhaust

Supersonic Nozzle Solutions

- For isentropic (adiabatic, inviscid/reversible), no work, quasi 1-D, non-reacting, tpg and cpg
 - throat is sonic ($A_t=A^*$, $M_t=1$)
 - for given γ, $M = f(A/A_t)$,
 actual eqn. $A/A^* = f(M, \gamma)$
 - then $T/T_o, p/p_o, \rho/\rho_o ... = f(M, \gamma)$

- How does this change (if at all) when we look at a “real” gas ($c_p \neq$ constant, reacting)?
Nozzle Flow Equations

- Conservation equations
 - differential control volume

\[
\frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0 \quad (\text{III.7}) \quad \rho u A = \text{const}
\]

- Momentum
 (inviscid)

\[dp = -\rho u du \quad (\text{III.8})\]

- Energy
 (adiab., no work)

\[dh = -u du \quad (\text{III.9}) \quad h_0 = \text{const}\]

Throat Condition

- Is \(M=1\) at throat still true?
- Review derivation
 - speed of sound
 \[a^2 = \left(\frac{\partial p}{\partial \rho}\right)_s\]
 - if flow is isentropic
 \[dp = a^2 d\rho\]
 - combine with III.8
 \[-\rho u du = a^2 d\rho \Rightarrow \frac{d\rho}{\rho} = -\frac{u^2}{a^2} \frac{du}{u}\]
 - into III.7
 \[\frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0\]
 - at throat \(dA/A=0\), so if \(du \neq 0\) (accel.)
 \[\Rightarrow M_t = 1\]
- So if flow isentropic, \(M_t=1\) still true in supersonic nozzle
 - no state equation information used in this derivation

AE 6050
Throat Condition

• Is flow still isentropic?
 – we have already assumed adiabatic, so does composition change and varying c_p imply not reversible?

• If equilibrium flow
 – gas is always in equilibrium – no entropy production (gas re-equilibration rate due to collisions $>>$ rate we are trying to change properties)
 – YES reversible

• If frozen flow
 – only modes that are changing are always in equilibrium, ditto

• So only thing “new” about equilibrium/frozen nozzle flow are new state relations, e.g., $\rho = \rho(h, s)$.... $\rho/\rho_o \neq f(M, \gamma)$

General Solution Approach

• Let’s assume we have a given T_o (or h_o) and p_o (or ρ_o)
 – e.g., given reservoir conditions

• Options
 1. Solve differential forms of conservation equations, e.g., vs dA, but need to know A/A^* (see below)
 2. Use mapping
 – with constraints from the conservation equations

\[
\rho u A = \text{const} \\
h_o = \text{const} \quad \text{and} \quad u = \sqrt{2(h_o - h)} \\
s = \text{const}
\]
Isentropic Mapping

- Given stag. cond.
 - and chosen \(h \)
 \[u = \sqrt{\frac{2}{\gamma} (h_0 - h)} \]
 \[\Rightarrow \rho, T, p, ... \]
 (state eqns.)
 \[\rho = \rho(h, s) \]
 \[T = T(h, \rho) \]
 \[p = p(\rho, T) \]
 \[\Rightarrow \frac{A}{A^*} \]
 (mass conserv)

\[\frac{A}{A^*} = \frac{(\rho u)_{max}}{\rho u} \]

But with Q’s

\[h = h(p, T) \]
\[s = s(p, T) \]
\[\rho = \rho(p, T) \]

Isentropic Nozzle Flow Summary

- So like shocks, understanding what happens to isentropic nozzle flow with “real” gas requires primarily understanding what happens to state equations
 - \(c_p \) (or \(h \)) vs \(T \) : with and without composition change
 - equilibrium and frozen flow assumption limits
Example: H₂/O₂ Rocket Nozzle

- Stagnation conditions
 - 175 atm, 3760 K
 - χ_{O₂}=29%
- 3 assumptions made
 - calorically perfect (frozen) flow, γ=1.36
 - equilibrium flow
 - chemically frozen flow
 - which is which?

Example: H₂/O₂ Rocket Nozzle

- Recombination of even “minor” (%) species can have large effect
 - e.g., on T
 - large chemical energies
Other Properties

• How do p, ρ, u, M depend on flow assumptions?
 – depends on what you hold “constant”
 • e.g., whether you compare them at the same T
 or the same A/A^*
• For example at same T
 – how would pressures compare between the 3 cases?

Example: H_2/O_2 Rocket Nozzle

• flow gives much higher p
 compared to other flow assumptions
 – why?