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Hybrid Rockets

AE6450 Rockel Propulsion

Background 3)5'3;
« Combination of liquid and solid rockets Z
—one propellant “solid” (usually fuel) fuel
—2n propellant liquid or gas (oxid.) /
4

« Early history

—1930’s combustion tests of
+ coal and N,O(g) at I.G. Farben, Germany
» coal and GOX by Calif. Rocket Soc.
« tar-wood-saltpeter and LOX by Hermann Oberth
(von Braun’s teacher), Germany
—1933 flight test GIRD-09 (15 s duration,
400m alt., 1.5 km distance)
+ gasoline-gum gel (“solid”) on metal frame and

pressurized LOX, Mikhail Tikhonravov and e |
Sergei Korolev www.russianspaceweb.com/gird09.html credit: ARRAN =8
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Hybrid Rockets: 1950-1970’s

* Mostly tests of polymer fuels and numerous oxidizers
— GE:1951-1956 (Moore), polyethylene and 90% H,O,
» demonstrated throttling by valve but low burning rates
— APL (JHU), Thiokol, UTC: 1950’s tested inverse hybrids (liquid fuel,
solid ox) v
* poor success
— UTC/NASA: mid 1960’s-1970 hypergolic hybrid, PBAN
impregnated with Li, LiH; and FLOx (30% F,, 70% O,)
* 380 slisp
— Volvo/Svenska Flygmotor: 1965-1971

» 1965 HR-3F, PB with aromatic amine
(Tagaform) fuel and white fuming nitric acid (WFNA) oxidizer

« flight test reached 4.2 km alt, 6.2 s duration, 30 g max accel.

— UTC: 1968 Sandpiper target drone, PMMA/Mg fuel ]
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and Mon25 (N,0O,, NO, and 25% NO)
» 300 s duration, 8:1 throttle ratio, level flight up to 160 km alt
from A. Ingemar Skoog, Swedish Sounding Rocket Projects, IAC-06-E4.4.02
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Hybrid Rockets: 1980’s-2000°s (US)

» 1983 Teledyne Firebolt: air-launched target drone entered USAF
service, CSD-UTC hybrid rocket

—ram air turbine pressurized IRFNA,
PMMA/PB solid fuel

—10:1 throttle (120-1200 Ibf)

» 1984 Starstruck’s Dolphin rocket (James Bennett)
—HTPB and LOX
— 175kN thrust, follow-on tests at AMROC: up to 324 kN (H-500)
» 1999-2002 NASA-DARPA initiated program |
(ground test NASA Stennis)
— 70" D, 45 ft L, 250klIbf (1.1 MN) thrust,
T/W=2, 27 s burn duration

+ 2004 small hybrid (HTPB-N20O; 88kN)
used to launch Space Ship one

_Georgia AL@J legs of

USAF museum
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Iilybrid Rocket Performance

» Compared to SRM’s and LRE’s

— intermediate specific impulse,
density-specific impulse,

complexity
— control: restart, throttleable
— improved safety vs. solids (no o
detonation/explosion) solid
— specific impulse O/F varies during "¢

— lower regression rate than solids

— higher fraction of unburned solid
after burn
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meample — SRM Replacement

» Pressurization
— similar options to
liquid rockets: gas,
turbopump (expan-

- Pressurization system
I LO, oxidizer

— Systems tunnel
/

Graphite/aluminum LO, tank der tap oﬁ. )
7Lz inector » Oxidizer pre-
 Inert HTPB fuel grain vaporization

. / — r— Graphite composite case H

A v _W ] N P Final volume fo_r_
— i N | propellants to finish

jolic s — Mi; . .

o Mg ey L maememer purning since not
ssilid ol mixed initially
» Simple injector ;

L J — combustion

efficiency of 90-

95% considered
FIGURE 15-1. Large hybrid rocket booster concept capable of boosting the Space pretty gOOd

Shuttle. It has an inert solid fuel grain, a pressurized liquid oxygen feed system, and

can be throttled. from Sutton
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Hybrid Rockets

Regression Rate and Internal Ballistics

AE6450 Rockel Propulsion
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Combustion “Rate”

Major difference from liquid bipropellant
and solid technologies is due to o
combustion process Liquid Bipropellant
Processes limiting burn rate are:

— mass injection rate

— mixing (often requires conversion

to gas)

— heat transfer

— chemistry (generally fast)

Liquid bipropellants, pressurization
system controls mass injection, 10’s um
combustion primarily limited o
by mixing rate

Solid propellants, well mixed (at least
within 10-100 pm), combustion limited by 2SR
mass injection, depends on heat WEERNP IR SRS
transfer from flame to surface Solid (Composite) Propellant

Caprom o202 AE6450 Rockel Propulsion
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Hybrid Regression Rate

* Hybrid combustion rate
— limited by conversion of solid fuel to gas
— gas needs to

13 H ” B d i i

diffuse” toward o ey Dlaeen

oxidizer across Oxid -

boundary layer @ = Heat,Mass
- heat.from flame needs f

to “diffuse” downward to So“d ,:ue|

drive vaporization of solid

fuel

* Varies downstream
— as boundary layer/flame distance changes
— fuel mass injection varies along port length
» Depends on oxidizer injection rate
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Multlport Fuel Grains

» Hybrids generally have
lower regression rate
than solid propellants

— higher burn area
required to achieve
high thrust

— use multiple ports

— also reduces distance
to oxidizer stream

* More complex casting
required

* Unburned “slivers”

— left over or broken off

Combustion Fuel
Ports  ynpumed ~ Crain

Slivers
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Example Unburned Fuel

Before burn After burn

Remaining
unburned fuel

— wasted mass
— lower effective

density-
specific
impulse
some solid fuel remaining on
struts (structural supports)
From Figure 7.19 Humble
b 51,21, 218 .Sl A s AE6450 Rockel Propulsion
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Hybrid Regression Rate

» Hybrid burning rate limited by heat transfer
back to solid fuel
— similar issue seen in erosive burning of
solid propellants
— recall Lenoir-Robillard model (1957) based
on heat transfer boundary layer

0.2 (pu)bum
IU/D AT =T 08 —conskT
fo C_p( Yo, ) Pr? TO_TS G, e “blowing” ratio
s s P — Of mass fluxes
77777
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Analytic Hybrid Regression Rate

* So we expect solid fuel regression rate in
hybrid to be function of

Thybria = f (Goo’/’l’ Gy1ia/ G » X,...)
— unlike solid propellant, r « p;
no direct pressure dependence
* From analysis of convective heat transfer in

turbulent boundary layer over flat plate with
blowing,

G, °° M o2 023 Eg.16-1in Sutton
Moyorig = 0.036 ——| = | S~

g

,0 sf X
Blowing ﬂ _ GSOlid St_lpr_z/g PI’ — K . St — h
Coefficient TG a’ £.U.C,
o o0y 2017 2013 by Sy Sekman, A g esred AF6450 Rockel Propulsion
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Rﬂegression Rate Dependence

Gwo.s H > 0.23
rhybrid:0.036— = p
. psf X
* |Increases with local free stream mass flux
(G =oxid.+fuel+products)

— G_typically increases downstream
+ 1/x dependence

— due to boundary layer growth
. In(f_rdeases with relative importance of injection from

soli

— can show (See A5 b~ Tttame ™ Tsurface highﬂ = hO_t ﬂame_or

Sutton 7t ed.) Ahvap,surface easily vaporized solid

* Ignores

— curvature and radiative heat transfer (e.g.,
metalized solids, which also tend to increase Ty me)

G 007 1.2 AE6450 Rockel Propulsion
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Emplrlcal Local Regression Rate Models
* Ignoring blowing and for given system

Myoria = @GoX " .., O,-HTPB, empirical results indicate
n~0.75-0.77; m~0.14-0.16

close to turb. b.l. model
Some empirical data suggests
|
rhybrld aGn poD

— observed pressure and port diameter
dependence

+ Ballistic performance scaling of hybrids
complex, less understood — harder to design

Copro & 20720172019 o Soean A s AE6450 Rockel Propulsion

i |

Average Burn Rate

» Above are regression rates at some local
distance along port (x)

» Useful to have avg. regression rate

rhf total — ravgps'A\)
* Defn.

= s
L -t
« Examine usmg S

r=aG'x "= a(GOX +G;, (X))n X" G(x)=4p,

O ey <
-
on)
><‘
S~
o
><‘
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Average Burn Rate

rfo g

+ Can often assume Dp#Dp(X)

0.3 ! O—0—0—0—0—0—0—0—0—0—060s

r (m)

et e e+ o+ + 2405 G, T downstream

0.25
g P e e L offset by b.l. growth
§0.15 ————————————————————————————— 0.1s
0.1
o 1 2 3 4 5 r(x) — dl,

Distance Down Port - x (m) Ir dx
X

From Figure 7.7 Humble p) N " .

(calculations based on r(X) =al G,, + 4—5_[ r(x )dx X

given propellant data) D 0
e o 207 5 s S A AF6450 Rockel Propiilsion
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Avecrage Burn Rate (Uniform Port)
. o i, ap1 T
Continuing, r(x)= ™ —aGO{1+—DPGOJ X

» Separate variables depending on x and on |,
then integrate separately

1-m %—n
| (x)= D,G,, (1+ 4(1—n)apsxl_ J 1
4ps (1_ m)DPGoxn

[ T— AE6450 Rockel Propulsion
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Avearage Burn Rate (Uniform Port)

» So average burn rate over distance X is

D.G 41-n)ap X Hon

M, =—2—2| 1+ . -1

° 4px (1-m)D,GL"
BTMPe50

. . often <<1
» Using Taylor expansion
2n[

a jp Xl—rn
s
ravg ~ (a)G:XXm 1+ ]'_m—

1-m D.G."
X1—m
~ N y—M ! —Aa'h y—Mm
Ty 2G| 1+ 200, i |~ 2GoX @+¢)
useful for prelim. P ox

SO PO i (t)=r,,(L)o,A, ~ 2o )G (AL
—get S(t), A (t) from regression rate

P p— AE6450 Rockel Propulsion

E;ample Regression Law Data

B . e
Polybutadiene/ Large'
LOXx All Motors Small Motors Motors
Avg. Avg. Avg,
Equation n m Error n m Error | Error
1 ag"L™ 0.800 |-0.200 [5.5% |0.800 [-0.200 [3.9% |9.5%
2 ag"L™ 0.763 |-0.148 |4.7% |0.829 |[-0.256 [57% [13.9%
3 aegL’" 0.756 |-0.165 [6.4% |0.668 [0.028 [4.7% |38.5%

n m( 2anpli+m
4 | aGoL [H—Eh] 0765 |-0.162 |5.1% [0.740 |-0.103 |4.9% [11.5%
o

5 aG”L”'(1-exp(f%)) 0.767 |-0.254 |3.8% |0.757 |-0.242 [3.6% |3.5%

0722 |0.034 |46% |0.633 [0.076 [4.3% |108.3%
9p=-0.05 9p=-0.046

¢
6 ac)L"o% P

*The large-motor errors are calculated using small-motor constants, indicating the scaling effects.

smJablE 7.5 Humble AE6450 Rocket Propulsion
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E;ample Regression Law Data

PB/LOX -

Large’
T All Motors Small Motors

Aluminized Motars

Equation Avg. Avg. Avg.

9 L m Error U L Error Error

1 ag"L™ 0.800 |-0.200 [19.0% [0.800 |-0.200 |15.2% |36.1%

2 ag"L™ 0.676 |-0.063 [15.9% |0.749 |-0.185 |15.1% |27.9%

3 anL”' 0.597 [0.113 |17.4% [0.618 |0.142 [17.8% |16.6%

n,m(,  2anpL(1+m)
4| aGgL [HW 0645 (0025 |18.8% 0677 |-0.016 [19.0% |21.3%
o

- ]
5 EGZL’"(1_GH)(1_9625) 0535 |-0.052 [65% [0547 [-0.048 |58% [10.1%

0532 [0145 [11.3% [0565 [0027 [67% |27.9%
9p=0574 9p=0677 I

9
6 acIL"p% ®

*The large-motor errors are calculated using small-motor constants, indicating the scaling effects.

—Jable 7.6 Humble AE6450 Rockel Propulsion

]
_Georgia ||
- Tgcl:h I’ =g

Motor Ballistics
As with solid motors, use mass
conservation to determine motor
conditions
d ) . .
O:_(povo)+mexit_(mf +m0x)

dt
Vo de +,00Abr = (pSfAbr+ mox)_mexit

RT, dt
Vo dp,

T (psf _po)Aur—i_mox

RT, dt
P 2
1/RT0 \/;(yﬂ

j%(u)

Hybrid Rockets 22
Copyright ® 2007,

R — AE6450 Rockel Propulsion
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Motor Ballistics

J
» Using our model for the avg. S, (. O

regression rate r,,, =a'G;L™" A,
— and assuming quasi-steady
operation with a high density fuel

\/RT0/7(7+1jy%(7‘” Sy o
P, = a Py & — Mgy Mg,y
A 2 A

— possible time-dependent variables

(nozzle erosion significant issue in
oxidizer rich cases)

P, = P, (T,, MW, 7, A,D,,m,,) S,.A =f(D,)

—«3-

\/

S

@©
=
=

DO

img,

IBREEARERRRN

<++++++++++++
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“Unsteady” Behavior
P, = po(To’ MW, y, Ah Dp’ mox)

* Already know D, changes with time

— suggest p, and therefore thrust may
change with time

* From previous analysis, also know

() SOBL O - s@){w}”

Alt)
mox [Ax (t)]n v —n
m_f oC S(t) [mox(t)]l

— O/F ratio can also change with time

[ T— AE6450 Rockel Propulsion
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O/F Ratio
« Change in O/F with time %oc[A*(t)] [m,, ()] "

e S0
—e.g., circular por O/F o "D,

— for fixed oxid. flow rate (O/F);... [ Ds ina
O/F T If n>0'5 (O/F)mmal DP,initiaI
reduced “burn” rate even as A, increase, because lower heat xfer

— estimate amount from volum. loading effic.
= Volume Grain/Volume Chamber, typically ~0.6

2n-1

0.5

DP,final - Dchamber - ( chamber/L) 1

DP,initiaI DP,initiaI (B/chamber Vgram]/l—)o 1_Vgrain/\/chamber
D, . O/F).

P.final _ | 1 16 for HTPBILOX n-0.75 Mﬂs
DP,initiaI 1-0.6 (O/F)initial

Compian 5507 201, 20190 ey St e s AF6450 Rockel Propiilsion
ﬁ
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O/F Ratio Importance
» Besides reduction in fuel mass flux through rocket,

does change in O/F ratio have any other effects

0,/HTPB
m . B

L e e T

§

1, = e101(0/FF -13899(0/F) + 838550/ R

Flame Temp. (K)
Flame Temperature (K)
g

o _| 25,5020(0/F° ) +40,466.0(0/F)? -28, 6800 (0/F)
2600 +8407.4
2400
mi:::jl]::iil?lliiiiii‘
12 13 14 15 16 1.7 18 19 2 21 22 23 24 25 26 27 28 29 3 3.1 32 33 34 35
) Mixture Ratio by Mass (max/m,u.,)
Figure B.29 Humble O/E
e st st S A s AE6450 Rockel Propuision

13



O/F Ratio Importance
» Besides reduction in fuel mass flux through rocket,
does change in O/F ratio have any other effects
0,/HTPB

—— MW

MW Products
Mass of Ci

. L -89.006 (0/F)° + 15056 (0/F) —1217(O/F)
L A +52.301

12 13 14 15 16 1.7 18 19 2 21 22 23 24 25 26 27 28 29 3 31 3233 34 35
Figure B.30 Humble Mixture Ratlo by Mass (rh,, /ritg,q))

P, = P, (TO, |V|W) c = C*(TO’ MV(\)//)F = p,, ¢* and thus 7,1, unsteadiness

AE6450 Rockel Propulsion

O/F Ratio

2n-1

+ Again for circular port O/F i "D,

— n=0.5 removes dependence on port size
« freestream mass flux dependence of burn rate
(A25~D) cancels ~A,, (PxL~D) dependence
— but also likely results in lower regression

rate .
Fvg ~ @Gg,X

[ T TT— AE6450 Rockel Propulsion
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Oxidizer Control

Can use oxidizer flow rate to control O/F

P o (AL g

m, S(t)

If O/F increasing then can offset by reducing

oxidizer flow rate

— but that means lower total mass flow rate

through rocket

+ will tend to lower thrust, partly made up by
increase in specific impulse, exit velocity

If trying to throttle engine, same concerns

AE6450 Rockel Propulsion

1.4 7 n=05
WL 06
1.3 Decrease oxidizer flow - throttle down 07
1.2 1 | .
5., ‘* - 08  Figure 7.10
E 09 Humble
& 1 1.0
X 0.9
Eos
§ 0.7 —_— .
L 0.6 Increase oxidizer flow - throttle up oxid.
o | R,
: ’,
0.4 —_— 7

|
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Throttling via Oxidizer Flowrate

0 0.2 04 0.6 0.8 1 1.2 14 186 18 2
Ratio of Final Oxidizer Flow Rate to Initial Oxidizer Flow Rate fuel

weak dependence of O/F on G, for n—1
(G; linearly proportional to G, in that case)

when throttling down, usually O/F{ (richer), can add
oxid. downstream of fuel to maintain constant O/F

7
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