

Auxiliary TD Functions

- Now formally introduce a set of TD properties that are *sufficient* for the development of chemical thermodynamics (and most other thermodynamic considerations)
 - T, p, v (or V) : readily measureable
 - U, S (or u, s) : less directly measureable *also have physical interpretations*
- Also, can be *convenient* to use following TD properties

– Enthalpy	$H \equiv U + pV$	$h = u + pv$
– Gibbs Free Energy (or Gibbs Function)	$G \equiv H - TS$	$g = h - Ts$
– Helmholtz Free Energy (or Helmholtz Function)	$F \equiv U - TS$ <i>Extensive</i>	$f = u - Ts$ <i>intensive</i>

Properties of Enthalpy

- Consider substance undergoing change of state $1 \rightarrow 2$
- From H defn. $\Delta H = H_2 - H_1 = U_2 - U_1 + p_2 V_2 - p_1 V_1 = \Delta U_{12}$
- For a **closed system (control mass)**
 - 1st Law: $\Delta U_{12} = Q_{12} + W_{12}$
 $\Rightarrow \Delta H_{12} = Q_{12} + W_{12} + p_2 V_2 - p_1 V_1$
 - a. **constant p process** $W_{12} = -\int p dV = -p(V_2 - V_1)$
 $\Delta H_{12} = Q$ *Q for isobaric CM, no other work given by ΔH*
 - b. **constant V process** $W_{12} = 0$
 $\Delta U_{12} = Q$ *Q for no work CM, given by ΔU*
 - c. **isolated system**
 $e.g., \text{chem. rxn. in rigid, adiabatic vessel} \Rightarrow \Delta U = 0, \Delta V = 0, Q = W = 0$
 $\Delta H_{12} = V(p_2 - p_1)$
enthalpy not “conserved” in isolated system $= \Delta p_{12}$

Useful Work for Flowing Systems

- For flow systems, convenient to work with **control volume CV (open system)**
- For general CV (shape changing, accelerating) can write 1st Law as

$$e = u + mv^2/2$$

all defined as positive into CV

$$\dot{Q} + \dot{W}_u + \dot{W}_{boundary} + \dot{W}_{body} = \frac{d}{dt} \int_{CV} \rho edV + \int_{CS} e(\rho \vec{v}_{rel} \cdot \hat{n}) dA$$

energy transfer rate into CV rate of change of energy inside CV net rate energy flows out of CV carried by mass

\dot{m}'' \dot{m}' \dot{m}

\dot{Q} \dot{W}_u $\dot{W}_{boundary}$ \dot{W}_{body}

\hat{n} \hat{n} \hat{n}

$CS(t)$ $CS(t+dt)$

\vec{v} \vec{v}_{CS}

v_{rel} = vel. of mass crossing CS relative to CS

– if no body forces, no viscous forces, CV shape fixed

$$\dot{Q} + \dot{W}_u - \int_{CS} p(\vec{v} \cdot \hat{n}) dA = \frac{d}{dt} \int_{CV} \rho edV + \int_{CS} e(\rho \vec{v}_{rel} \cdot \hat{n}) dA$$

AE/ME 6765

Useful Work for Flowing Systems

$$\dot{Q} + \dot{W}_u - \int_{CS} p(\vec{v} \cdot \hat{n}) dA = \frac{d}{dt} \int_{CV} \rho edV + \int_{CS} e(\rho \vec{v}_{rel} \cdot \hat{n}) dA$$

Flow Work: mass entering/leaving CV has to “push” its way in/out

- Further limit consideration to **stationary CV** ($\Rightarrow \vec{v} = \vec{v}_{rel}$)

$$\int_{CS} e(\rho \vec{v}_{rel} \cdot \hat{n}) dA + \int_{CS} p(\vec{v}_{rel} \cdot \hat{n}) dA = \int_{CS} \left(e + \frac{p}{\rho} \right) (\rho \vec{v}_{rel} \cdot \hat{n}) dA$$

or reference frame is CV

$$= \int_{CS} \left(u + \frac{p}{\rho} + \frac{v^2}{2} \right) (\rho \vec{v}_{rel} \cdot \hat{n}) dA$$

enthalpy represents internal energy + flow work of mass crossing CS

$$= \int_{CS} \left(h + \frac{v^2}{2} \right) (\rho \vec{v}_{rel} \cdot \hat{n}) dA$$

$$\dot{Q} + \dot{W}_u = \frac{d}{dt} \int_{CV} \rho edV + \int_{CS} \left(h + \frac{v^2}{2} \right) (\rho \vec{v}_{rel} \cdot \hat{n}) dA$$

AE/ME 6765

Uniform, Steady Flow System

for CV
stationary in
reference frame

$$\dot{Q} + \dot{W}_u = \frac{d}{dt} \int_{CV} \rho e dV + \int_{CS} \left(h + \frac{V^2}{2} \right) (\rho \vec{V} \cdot \hat{n}) dA$$

- Example for system where mass inflows/outflows are uniform and CV is in steady-state

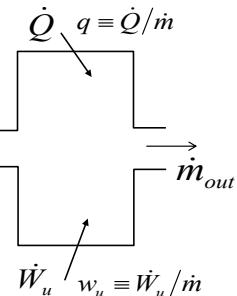
– steady: $\dot{m}_{in} = \dot{m}_{out} \equiv \dot{m}$, and $dE_{CV}/dt = 0$

$$\dot{Q} + \dot{W}_u = \dot{m} \left(h_{out} + \frac{V_{out}^2}{2} \right) - \dot{m} \left(h_{in} + \frac{V_{in}^2}{2} \right)$$

– assuming negligible KE change

$$\dot{Q} + \dot{W}_u = \dot{m} (h_{out} - h_{in}) \Rightarrow q + w_u = h_{out} - h_{in}$$

– for example if this was an adiabatic valve, q and $w_u = 0$
 $\Rightarrow h_{out} = h_{in}$, **isenthalpic** process



AE/ME 6765

Second Law for CV

- In similar fashion, can write 2nd Law for CV

$$\dot{\mathcal{P}}_s + \int_{CS} \frac{\dot{Q}''}{T} dA = \frac{d}{dt} \int_{CV} \rho s dV + \int_{CS} s (\rho \vec{V}_{rel} \cdot \hat{n}) dA$$

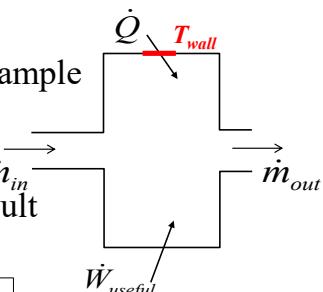
- For simple, steady flow system example

$$\dot{\mathcal{P}}_s + \frac{\dot{Q}}{T_{wall}} = \dot{m} (s_{out} - s_{in}) \Rightarrow \frac{\dot{\mathcal{P}}_s}{\dot{m}} + \frac{q}{T_{wall}} = s_{out} - s_{in}$$

- Combine with previous energy result

$$w_u = (h_{out} - h_{in}) - T_{wall} (s_{out} - s_{in}) - \dot{\mathcal{P}}_s / \dot{m}$$

$$\dot{\mathcal{P}}_s \geq 0 \Rightarrow \begin{cases} w_{u,min,in} = (h_{out} - h_{in}) - T_{wall} (s_{out} - s_{in}) \\ w_{u,max,out} = (h_{in} - h_{out}) - T_{wall} (s_{in} - s_{out}) \end{cases}$$



previous CM result
 $w_{u,max,out} = (u_{in} - u_{out}) - T_{o}(s_{in} - s_{out})$
 Δh replaces Δu for flowing system

AE/ME 6765

Useful Work for Reacting Systems

- Consider **CM** which changes from state 1 to state 2 **at constant T** because of a **reaction** (change in composition)
 - 1st and 2nd Laws same
- Combine

$$\Delta U_{12} = Q + W \quad \Delta S_{12} = Q/T + \mathcal{P}_s$$

$$so \ work \ out \quad -W = -\Delta U_{12} + T\Delta S_{12} - T\mathcal{P}_s$$
 - again get maximum (useful) work out for reversible process
- If **constant V** (isochoric)
(so no pdV work)

$$W_{u,max,out} = -(U_2 - TS_2) + (U_1 - TS_1) = -F_2 + F_1$$

$$W_{u,out} \leq -(F_2 - F_1) \quad \text{constant } T \text{ and } V$$
- If **constant p** (isobaric)

$$W_{u,max,out} = -(U_2 + pV_2 - TS_2) + (U_1 + pV_1 - TS_1)$$

$$= -(H_2 - TS_2) + (H_1 - TS_1) = -G_2 + G_1$$

$$W_{u,out} \leq -(G_2 - G_1) \quad \text{constant } T \text{ and } p$$

Auxiliary Functions: Enthalpy-7
Copyright ©2021, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

General Conditions for Chemical Equil.

- Consider similar analysis as above but in differential form **AND no other work but pdV work**
- 1st and 2nd Laws $dU = \delta Q + \delta W = \delta Q - pdV \quad dS = \delta Q/T + \delta \mathcal{P}_s$
- Combine $TdS - dU - pdV = \delta \mathcal{P}_s \geq 0 \quad \text{Equilibrium Condition}$
 - for **isolated system** $TdS - dU - pdV \geq 0 \quad \Rightarrow dS \geq 0$
(U, V constant)
 - for **constant T, V** $TdS - dU - pdV \geq 0 \quad \Rightarrow dF \leq 0$
 $dF = d(U - TS) = dU - TdS - SdT \quad F_{\min} \text{ composition}$
 - for **constant T, p** $TdS - dU - pdV \geq 0 \quad \Rightarrow dG \leq 0$
an actual process doesn't have to take place at constant conditions, e.g. (T,p) , to use these relations; can be used to define equilibrium composition at known (T,p)
 $SdT + TdS - dU - pdV - Vdp \geq 0 \quad \Rightarrow dG \leq 0$
 $d(ST) - dU - d(pV) = d(ST) - dH = -dG \quad G_{\min} \text{ composition}$

Auxiliary Functions: Enthalpy-8
Copyright ©2021, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765