

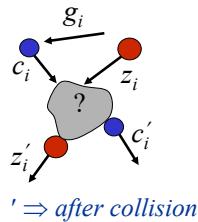
Equilibrium Velocity Distribution

- Pressure and diffusion results were found without knowing the form of $f(c_i)$
 - just needed to know there was such a distribution, and that we assumed we were in equilibrium for p expression
- What is f at equilibrium $\equiv f_0$?
 - note: even when not in equilibrium, may be able to use $f = f_0 + f'$ (small perturbation from equilibrium)
- Original approach taken by Maxwell used statistical argument and constraint equations
- Here we will employ physical approach based on **collision rates**, focus on bimolecular collisions

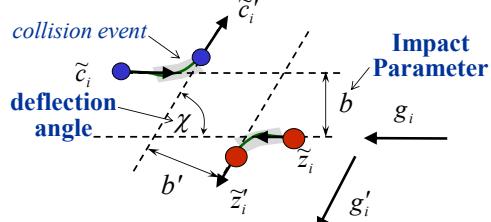
Bimolecular Collisions

- Consider two molecules
 - molecule of species A and from velocity class c_i colliding with molecule of species B moving at z_i
 - collision occurs because force fields from the two molecules interact, causing a deflection
 - so collision involves momentum transfer
- Most convenient to analyze collision in **center-of-mass** coordinate system
 - center-of-mass velocity $\equiv w_i$
 - $$(m_A + m_B)w_i = m_A c_i + m_B z_i \Rightarrow w_i = \frac{m_A c_i + m_B z_i}{m_A + m_B} = \frac{\text{reduced mass}}{m_A + m_B} \left[\frac{c_i}{m_B} + \frac{z_i}{m_A} \right]$$

Center of Mass Coordinates

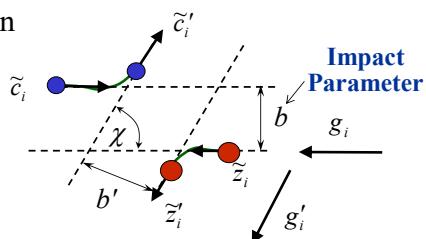

- Can rewrite molecular velocities in CM coordinates

velocity in CM coord $\tilde{c}_i = c_i - w_i = c_i \left(1 - \frac{m_{AB}^*}{m_B}\right) - z_i \frac{m_{AB}^*}{m_A} = \frac{m_{AB}^*}{m_A} (c_i - z_i) = \frac{m_{AB}^*}{m_A} (-g_i)$


– similarly $\tilde{z}_i = z_i - w_i = \frac{m_{AB}^*}{m_B} g_i$ relative velocity $\equiv z_i - c_i$

- Molecular motion in plane of collision

Lab coord. system


CM coord. system

Equil Kin Theory -3
Copyright © 2005, 2018, 2019, 2021-2022, 2024 by Jerry M. Seltzman.
All rights reserved.

Impact Parameter

- What does impact parameter (b) represent?
 - closest distance that would occur between centers of particles if no trajectory change
 - for larger b , less likely that a collision with large deflection angle (χ) would occur
 - $\chi = 0$ means no collision occurred
 - no momentum transferred between molecules

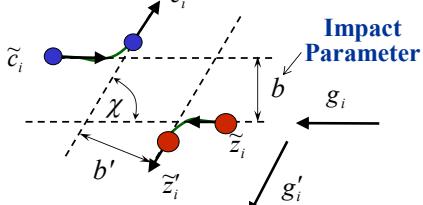
Equil Kin Theory -4
Copyright © 2005, 2018, 2019, 2021-2022, 2024 by Jerry M. Seltzman.
All rights reserved.

CM Collision Conservation Eqns

- Want to relate velocities after collision to before
 - conserv. of momentum**

$$m_A \tilde{c}_i + m_B \tilde{z}_i = m_{AB}^* (-g_i) + m_{AB}^* (g_i) = 0 \quad \text{total mom. in CM coord} = 0 \quad w_i = w_i' \quad \begin{array}{l} \text{CM velocity} \\ \text{constant (no} \\ \text{external forces)} \end{array}$$

- conserv. of energy** (elastic)


$$KE = \frac{1}{2} m_A c_i^2 + \frac{1}{2} m_B z_i^2 \quad c_i^2 = \left(w_i - \frac{m_{AB}^*}{m_A} g_i \right)^2 \quad z_i^2 = \left(w_i - \frac{m_{AB}^*}{m_B} g_i \right)^2$$

$$= \frac{1}{2} (m_A + m_B) w_i^2 + \frac{1}{2} m_{AB}^* g_i^2$$

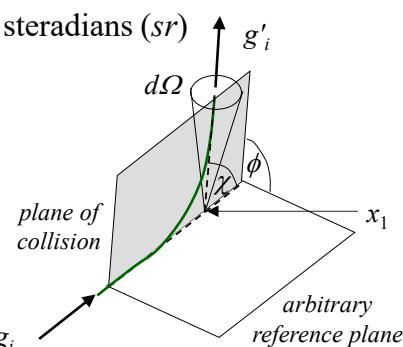
$$\begin{array}{l} \text{relative speed} \\ \text{unchanged} \end{array} \Rightarrow |g_i| = |g_i'| \equiv g$$

- conserv. angular mom.**

$$\begin{array}{l} \text{impact parameter} \\ \text{unchanged} \end{array} \quad |g_i| b = |g_i'| b' \Rightarrow b = b'$$

AE/ME 6765

Differential Solid Angle


- Now look at collision in 3-d space
- Can define which part of space molecules “enter” after collision using **differential solid angle** of collision, $d\Omega$
 - solid angles have units of steradians (sr)

$$d\Omega = \sin \chi d\chi d\phi$$

$$\int d\Omega = \int_0^{2\pi} \int_0^\pi \sin \chi d\chi d\phi$$

$$\begin{aligned} \Omega_{total} &= -\cos \chi \Big|_0^\pi \phi \Big|_0^{2\pi} \\ &= -(-1-1)2\pi \\ &= 4\pi \end{aligned}$$

4π steradians in sphere around a point

AE/ME 6765