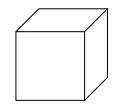


Boltzmann Limit

- When can we assume that Boltzmann limit is “accurate”, i.e., when $g_i \gg N_i$ or **number of quantum states that can have particles >> number of particles?**
- Number of particles**
 - TPG@SATP $\sim 10^{19}$ molecules/cm³ (from $pV=NkT$)
- Degeneracies**
 - simple case: atom, only electronic and translational quantum states, defined by $(n, l, m ; n_x, n_y, n_z)$
 - also assume atoms at STP can only be in 3 elec. energy levels
 - 3 n values, with complete degeneracy for all l, m
- 1) electronic degeneracy**
 - magnetic quantum number ($g_m = 2l+1$), typically $l \leq 2$
 - electron spin ($g=2s+1$), typically $s \leq 3/2$
 - so $g_{el,i} < O(20)$
 - therefore $g_{el,i} \gg N_{el,i}$ (at least one n contains $\geq 10^{19}/3$ atoms)
 - What about translations, how many quantum states there?

Translational Energy QM States

- Consider the particle in a “box” for a cube
 - recall QM solution of Schrödinger’s equation for energy of single translating particle
- At STP for N₂ in a “small” box ($L=1\text{cm}$), how many QM states have energy less than the average KE of a molecule in x -direction ($=1/2 k T$... will show this later)



$$\epsilon_{x,n_x} = n_x^2 \frac{\hbar^2}{8m} \frac{1}{L^2} \quad \text{or} \quad n_x = \sqrt{\frac{8m\epsilon_{x,n_x}}{\hbar^2}} \frac{L}{h}$$

- But this was just 1-D of cube

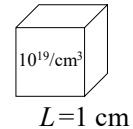
number of transl. states with $KE < KE_{avg} \approx (n_{i, KE_{avg,i}})^3 \approx 7 \times 10^{25}$

Boltzmann Limit Validity

- So in our 1 cm box, if all our molecules were to be found in just these states **are “accessible” at STP**
at least 10^{26} quantum states could be populated
 - number actually greater since some molecules must be in even higher energy states for the average KE to be correct
- Number of particles in 1 cm box is $\sim 10^{19}$

$$\frac{\# \text{QM States that could be populated}}{\# \text{Particles}} > \frac{10^{26}}{10^{19}} = 10^7$$

⇒ quantum states sparsely populated *Boltzmann limit usually reasonable assumption unless densities are very high (or T's very low)*
- For translations, we could “lump” energy states having energies between ε_i and $\Delta\varepsilon_i$ into one energy level (large box) with approx. same energy \Rightarrow degeneracy $g_{tr,i} \gg N_i$ **Extended Degeneracies**



AE/ME 6765