

Example Equilibrium Calculation

- Given mixture of CO₂, CO, O₂ at specified (T, p) *and C:O ratio*
- What is composition (intensive) at equilibrium (e.g., χ_i)?
- General approach: start with atom balances (mass conservation)
 - can write 2 equations, 1 for each nuclei type
$$n^C = n_{CO} + n_{CO_2} \quad n^O = n_{CO} + 2n_{CO_2} + 2n_{O_2}$$
 - in terms of mole fractions
$$\left(\frac{n^C}{n^O} \right) = \frac{n_{CO} + n_{CO_2}}{n_{CO} + 2n_{CO_2} + 2n_{O_2}} = \frac{\chi_{CO} + \chi_{CO_2}}{\chi_{CO} + 2\chi_{CO_2} + 2\chi_{O_2}}$$
 - since we can't "lose" an equation, also $\chi_{CO} + \chi_{CO_2} + \chi_{O_2} = 1$

Example Equilibrium Calculation

- Given mixture of CO₂, CO, O₂ at specified (T, p) *and C:O ratio*
- What is composition (intensive) at equilibrium (e.g., χ_i)?
- After atom balances, how many equations needed?
 - 3 unknowns – 2 equations = **1 more equation needed**
- Source?
 - K_p , can write chemical state relation ("reaction")

Equation Summary

- So we now have 3 equations for our 3 unknown χ_i

$$1. \quad \frac{\chi_{CO} + \chi_{CO_2}}{\chi_{CO} + 2\chi_{CO_2} + 2\chi_{O_2}} = \frac{n^C}{n^O}$$

$$2. \quad \chi_{CO} + \chi_{CO_2} + \chi_{O_2} = 1$$

$$3. \quad \frac{\chi_{CO}\chi_{O_2}^{1/2}}{\chi_{CO_2}} = p^{-1/2} \frac{K_{p_f,CO}(T)}{K_{p_f,CO_2}(T)}$$

- We can solve this (nonlinear) set of equations for a given T, p and n^C/n^O if we have the necessary formation properties of our species
 - e.g., from <https://janaf.nist.gov>

Composition: T and O/C Dependence

- CO_2 decreases at high T
 - has low chem. energy (low Δh_f), $T \uparrow$ favors higher energy species
- Increasing O/C shifts composition from $CO \rightarrow CO_2$ ($\chi_{CO_2}/\chi_{CO} \uparrow$)

Composition: T and p Dependence

- Increasing pressure drives composition to CO_2
 - high p favors “less” moles
- At T extremes, either CO or CO_2 ; so weak p dependence there

Mixture (TPG) Properties

- Now that we know composition as function of T , p and atom ratios, how do we calculate other properties?

- Enthalpy?

$$\begin{aligned} \hat{h} &= \sum_i \chi_i \bar{h}_i & h &= \sum_i Y_i h_i \\ &= \sum_i \chi_i \left[\left(\bar{h}_T - \bar{h}_{T_{ref}} \right)_i + \Delta \bar{h}_{f,i,T_{ref}} \right] & &= \sum_i Y_i \left[\left(h_T - h_{T_{ref}} \right)_i + \Delta h_{f,i,T_{ref}} \right] \end{aligned}$$

- Internal energy?

$$\begin{aligned} \hat{u} &= \hat{h} - p\hat{v} & u &= h - p\nu \\ &= \hat{h} - \bar{R}T & &= h - RT \end{aligned}$$

- Entropy?

$$\begin{aligned} \hat{s} &= \sum_i \chi_i \bar{s}_i & s &= \sum_i Y_i s_i \\ &= \sum_i \chi_i \left[\underbrace{\int_0^T \frac{\bar{c}_{p,i}}{T} dT}_{=s_i^o(T)} - \bar{R} \ln \frac{p_i}{p^o} \right] & &= \sum_i Y_i \left[\underbrace{\int_0^T \frac{c_{p,i}}{T} dT}_{=s_i^o(T)} - R \ln \frac{p_i}{p^o} \right] \end{aligned}$$

Molar Enthalpy: T and p Dependence

- Enthalpy increases monotonically with T
- Enthalpy of TPG mixture now depends on pressure
 - where composition is changing