

(Electro)Chemical Potential

- For “pure” (1 constituent), simple compressible substance, we know
 - S function of two variables, e.g., $S=S(U,V)$
- Consider mixture of k simple compressible substances
 - S now function of two variables and composition,
 $S=S(U,V,n_1,n_2,\dots,n_k)$

$$dS = \left(\frac{\partial S}{\partial U} \right)_{V,n_i} dU + \left(\frac{\partial S}{\partial V} \right)_{U,n_i} dV + \sum_{i=1}^k \left(\frac{\partial S}{\partial n_i} \right)_{U,V,n_{j\neq i}} dn_i$$

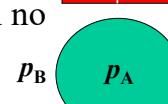
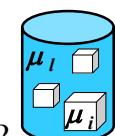
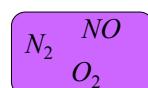
$1/T$ p/T $\mu_i: \text{Chemical Potential (intensive)}$
 thermal equilibrium mechanical equilibrium chemical/phase equilibrium

Chemical Potential-1
Copyright © 2009, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Chemical/Phase Equilibrium

- Two systems in **thermal equilibrium** have same?
– T
- Two systems in **mechanical equilibrium** (with no body or external forces) have same?
– p
- Two systems in **phase equilibrium** have same?
– μ
– e.g., liquid and solid water $\Rightarrow \mu_{liq} = \mu_{ice}$
- Two systems in **chemical equilibrium** have same?
– μ
– e.g., $N_2 + O_2$ and NO
 $N_2 + O_2 \rightarrow 2NO \Rightarrow \mu_{N_2} + \mu_{O_2} = 2\mu_{NO}$



Chemical Potential-2
Copyright © 2009, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Relationship to Gibbs Free Energy

- From definition of G ($=H-TS$)

$$\begin{aligned}
 dG &= dU + pdV + Vdp - TdS - SdT \\
 dG &= Vdp - SdT + \sum_{i=1}^k \mu_i dn_i \quad TdS = dU + pdV - \sum_{i=1}^k \mu_i dn_i \\
 V &= \left(\frac{\partial G}{\partial p} \right)_{T, n_i} - S = \left(\frac{\partial G}{\partial T} \right)_{p, n_i} \quad G = G(p, T, n_1, \dots, n_k) \\
 \mu_i &= \left(\frac{\partial G}{\partial n_i} \right)_{T, p, n_{j \neq i}} \quad \text{also written } \hat{\mu}_i \text{ since "per mole"}
 \end{aligned}$$

- μ_i for i^{th} substance in mixture; depends in some way on all other n_j

- Can be shown $\mu_i = \left(\frac{\partial U}{\partial n_i} \right)_{s, v, n_{j \neq i}} = \left(\frac{\partial H}{\partial n_i} \right)_{s, p, n_{j \neq i}} = \left(\frac{\partial F}{\partial n_i} \right)_{T, v, n_{j \neq i}}$

Evaluating μ_i for Single Phase Mixture

- Since G extensive

$$G(p, T, \lambda n_1, \dots, \lambda n_k) = \lambda G(p, T, n_1, \dots, n_k)$$

- This requires that

$$\sum_i \frac{\partial G(p, T, \lambda n_1, \dots, \lambda n_k)}{\partial (\lambda n_i)} \Big|_{p, T, n_j \neq n_i} n_i = G(p, T, n_1, \dots, n_k)$$

- True for all λ , including $\lambda=1$

$$G(p, T, n_1, \dots, n_k) = \sum_i \frac{\partial G}{\partial n_i} \Big|_{p, T, n_j \neq n_i} n_i \Rightarrow G = \sum_i n_i \mu_i$$

- For single phase, pure substance (1 component) $\mu = \frac{G}{n} = \hat{g}$ **Molar (intensive) Gibbs Free Energy**

Chemical Potential and Equilibrium

- We previously showed
 - for isolated system; U, V constant

$$dS \geq 0 \Rightarrow d\cancel{U}^0 + pd\cancel{V}^0 - \sum_{i=1}^k \mu_i dn_i \geq 0$$

– for **constant T, V** system

$$dF = dU - SdT - TdS$$

$$dF \leq 0 \Rightarrow -S\cancel{d}T^0 - pd\cancel{V}^0 + \sum_{i=1}^k \mu_i dn_i \leq 0 \quad \Rightarrow \sum \mu_i dn_i \leq 0$$

– for **constant T, P** system

$$dG = dU + d(pV) - SdT - TdS$$

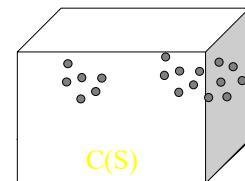
$$dG \leq 0 \Rightarrow Vdp - SdT + \sum_{i=1}^k \mu_i dn_i \leq 0$$

- Minimizing this term is a general equilibrium requirement for multicomponent systems
 - phases and/or chemical reactions

AE/ME 6765

Phase Equilibria Example

- Consider case of equilibrium between solid and gaseous carbon
 - e.g., graphitic soot $C(s)$ and $C(g)$ in a high T box
 - thermal and mechanical equilibria
 - $T_{C(s)} = T_{C(g)}$
 - $p_{C(s)} = p_{C(g)}$
 - phase equilibrium $\sum \mu_i dn_i = 0$
 - $\mu_{C(s)} dn_{C(s)} + \mu_{C(g)} dn_{C(g)} = 0 \Rightarrow \mu_{C(s)} = \mu_{C(g)}$
 - $dn_{C(s)} = -dn_{C(g)}$
 - μ_i of component i (same chemical formula) must have same value in every phase at equilibrium



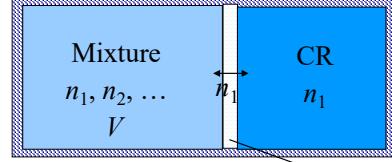
AE/ME 6765

Evaluating μ_i in Mixture

- Define Constituent Reservoir (CR) as holder of uniform, pure substance (single phase) that is internally reversible
- Consider isolated system made up of single-phase mixture in contact with CR through membrane
 - rigid (V_M, V_{CR} constant), nonadiabatic (Q allowed), semi-permeable (only passes 1 component)
- Equilibrium

CR pure, single phase

$$T_M = T_{CR}, p_M \neq p_{CR} \text{ and } \mu_{1M} = \mu_{CR} = \hat{g}_{CR}(p_{CR}, T_{CR})$$
- So, we have $\mu_i = \hat{g}_i(p^*, T)$ *p* pressure that would exist in pure phase of i @ equil. in contact with mixture (through our membrane)*
 $\text{for ideal gas mixture, } p^* = \text{partial pressure}$



Chemical Potential-7
Copyright © 2009, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Single Chemical Reaction Example

- Consider 3 species: HI, H₂, I₂ (and only these) that can react with each other **stoichiometric coefficients (v)**
- Can write this “reaction” as $2\text{HI} \rightleftharpoons \text{H}_2 + \text{I}_2$
 - why this way?
 - for these three molecules, this is the only way to conserve mass = “atoms” (nuclei) must “balance”
 - mathematically $\sum v_i M_i = 0$
 - v_i : stoich. coeff. for ith species (+) RHS; (–) LHS
 - M_i : ith species (e.g., HI or H₂ or I₂ in our example)

Chemical Potential-8
Copyright © 2009, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Single Chemical Reaction Example

- Now define progress variable: η
 - how far we progress between pure LHS (2HI) and pure RHS (H₂+I₂) $\eta=0$ $=1$
- Then $d\eta = \frac{dn_i}{v_i}$ $d\eta \begin{cases} > 0 & \rightarrow \\ < 0 & \leftarrow \\ \equiv 0 & \text{equil!} \end{cases}$
- $\sum_i \mu_i dn_i = \sum_i \mu_i (v_i d\eta) = \left(\sum_i \mu_i v_i \right) d\eta$
- General equilibrium requirement $\sum_i \mu_i dn_i \leq 0$
 - $\underbrace{- \left(\sum_i \mu_i v_i \right) d\eta \geq 0}_{\equiv \text{Affinity (sign tells in which direction reaction will go)}}$ $\sum_i v_i \mu_i \begin{cases} > 0 & \rightarrow \\ < 0 & \leftarrow \\ \equiv 0 & \text{equil!} \end{cases}$

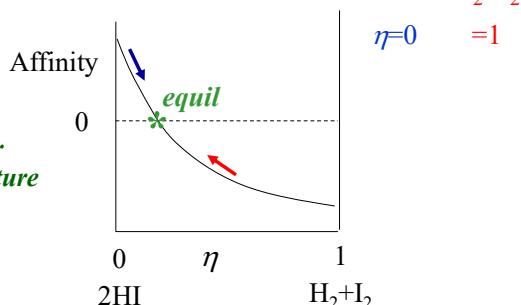
Chemical Potential-9
Copyright © 2009, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765

Single Chemical Reaction Example

- For our example Affinity = $\{(\mu_{H_2} + \mu_{I_2}) - 2\mu_{HI}\}$

reason μ called chemical potential
reaction proceeds to lower chemical potential of mixture



Differences in μ sometimes regarded as origin of diffusion processes, which tend to create a mixture of uniform (electro)chemical potential

Chemical Potential-10
Copyright © 2009, 2023, 2025 by Jerry M. Seitzman.
All rights reserved.

AE/ME 6765