Chemical Equil: Number of K_p Eqns.

- How many equilibrium stoichiometric reactions (K_p’s) are required to determine equilibrium composition of chosen set of species?
- Assume mixture of M species having α kinds of atoms (nuclei)
- Generally $M+2$ unknowns (2 intensive TD props.)
- IF we specify the 2 TD properties (e.g., T, p or h, p) AND the number/ratio of atomic nuclei
 - that leaves $M-\alpha$ unknowns which requires $M-\alpha$ independent K_p expressions
 (=number of reaction degrees of freedom)

Examples

- Mixture of H_2 and O_2
 - how many K_p required?
 - $M=2, \alpha=2 \Rightarrow M-\alpha=0$ K_p required
- Mixture of H_2, O_2, H_2O
 - how many K_p required?
 - $M=3, \alpha=2 \Rightarrow M-\alpha=1$ K_p required
- Mixture of H_2, O_2, H_2O, OH, O, H
 - how many K_p required?
 - $M=6, \alpha=2 \Rightarrow M-\alpha=4$ K_p required
Examples (con’t)

- Mixture of NH₃, HCl, NH₄Cl
 - how many K_p required?
 - $M=3$, $\alpha=3 \Rightarrow M-\alpha=0$ K_p required ??

- No!
 - for this problem, only 2 of the atom conservation equations are independent

\[
\begin{align*}
N: & \quad dn_{\text{NH}_3} + dn_{\text{NH}_4\text{Cl}} = 0 \\
Cl: & \quad dn_{\text{HCl}} + dn_{\text{NH}_4\text{Cl}} = 0 \\
H: & \quad 3dn_{\text{NH}_3} + dn_{\text{HCl}} + 4dn_{\text{NH}_4\text{Cl}} = 0
\end{align*}
\]

Number of independent equilibrium expressions required is $M-\alpha^$ where α^* is number of INDEPENDENT atom conservation equations*

Number of Independent Reactions

- How do you determine how many of the atom conservation equations are independent?
 - linear algebra can be used
 - atomic formation reaction approach
 1. write a reaction forming each non-monatomic species from its atoms
 2. combine equations to eliminate any atom not actually a species in chosen composition