

Chemical Equil: Number of K_p Eqns.

- How many equilibrium stoichiometric reactions (K_p 's) are required to determine equilibrium composition of chosen set of species?
- Assume mixture of M species having α kinds of atoms (nuclei)
- Generally $M+2$ unknowns (2 intensive TD props.)
- IF we specify the 2 TD properties (e.g, T, p or h, p) AND the number/ratio of atomic nuclei
 - that leaves **M- α unknowns** which requires **M- α independent K_p expressions** (=number of reaction degrees of freedom)

Examples

- Mixture: H_2 and O_2
 - how many K_p required? *Red colored expressions*
 - $M=2, \alpha=2 \Rightarrow M-\alpha=0$ K_p required *- are formation reactions*
- Mixture: H_2, O_2, H_2O
 - how many K_p required? *e.g., $H_2 + \frac{1}{2} O_2 \leftrightarrow H_2O$*
 - $M=3, \alpha=2 \Rightarrow M-\alpha=1$ K_p required *or $2H_2O \leftrightarrow 2H_2 + O_2$*
- Mixture: H_2, O_2, H_2O, OH, O, H
 - how many K_p required? *e.g., $H_2 + \frac{1}{2} O_2 \leftrightarrow H_2O$ (1)*
 - how many K_p required? *$\frac{1}{2} H_2 \leftrightarrow H$ (2)*
 - $M=6, \alpha=2 \Rightarrow M-\alpha=4$ K_p required *$\frac{1}{2} O_2 \leftrightarrow O$ (3)*
 - $M=6, \alpha=2 \Rightarrow M-\alpha=4$ K_p required *$\frac{1}{2} H_2 + \frac{1}{2} O_2 \leftrightarrow OH$ (4)*

could replace (2), (3) or (4) or? $H+O \leftrightarrow OH$
could replace (1), (2) or (4) or? $H+OH \leftrightarrow H_2O$

Examples (con't)

- Mixture of NH_3 , HCl , NH_4Cl
 - how many K_p required?
 - $M=3, \alpha=3 \Rightarrow M-\alpha=0$ K_p required ??
- No!
 - for this problem, only 2 of the atom conservation equations are independent

$$\begin{array}{rcl} \text{N: } dn_{\text{NH}_3} + dn_{\text{NH}_4\text{Cl}} = 0 & & 3 \times \\ \text{Cl: } dn_{\text{HCl}} + dn_{\text{NH}_4\text{Cl}} = 0 & & + 1 \times \\ \text{H: } 3dn_{\text{NH}_3} + dn_{\text{HCl}} + 4dn_{\text{NH}_4\text{Cl}} = 0 & & = \end{array}$$

Number of independent equilibrium expressions required is $M-\alpha^$
where α^* is number of INDEPENDENT atom conservation equations*

Number of Independent Reactions

- How do you determine how many of the atom conservation equations are independent?
 - linear algebra can be used
 - atomic formation reaction approach
 1. write a reaction forming each non-monatomic species from its atoms
 2. combine equations to eliminate any atom not actually a species in chosen composition