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• So for monatomic gas

• What happens when we add more nuclei

• Simplest multiatom molecules?

– diatomics

• Qtr – no change

• Qel – similar to atoms 

Diatomic Molecules

Born-Oppenheimer Approximation
separating electron from nuclear motion,

e- move so fast that E field they experience 
is from “fixed” position nuclei

Q = QtrQint

   = QtrQel

Q = QtrQint = QtrQel Qrot,vib 

and assuming rotation and vibration 
modes (motions) independent

Q = QtrQel QrotQvib
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Electronic States of Diatomics
• Naming nomenclature similar to multielectron 

atoms

describes e- orbitals 
around nucleus

describes e- orbitals 
about internuclear axis
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Qel Example: NO
• Ground (lowest energy) electronic levels of NO have a 2 

configuration  =1, S=½  

– so we get 2 spin(-split) states: = 1/2, 3/2  

– and 2 “lambda-doubled” states 

• lambda-doubling occurs for all >0

• Next excited electronic state is 
a 2 =0, S=½ 

• If we count each spin-split
state as different (non-degenerate)

• So Qel,NO  2 + 2e-174K/T + 2e-63,300K/T

– and       Qel,NO  4 for 174K<<T<<63,300K
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Rotational Partition Function: Qrot

• Recall for rigid rotor model

– B is rotational constant 

(typical units of cm-1)

– and

• So

• For T >> r, summation can be approximated by 

continuous integral
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Rotational Energy

• Rotational energy (for T >> r)

– and specific heat ĉv,rot = dȇrot /dT

– so rotational mode calorically perfect

• cv,rot=constant=2/2 R

• same result as Equipartition of Energy for rotational 
mode with 2 degrees of freedom (linear molecule has 
2 moments of inertia) 

– when rotational mode is fully-excited (i.e., for T/r >>1)
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Homonuclear vs Heteronuclear
• Diatomics can have 2 nuclei that are 

the same (homonuclear) 
or different (heteronuclear)

• This leads to a symmetry consideration in the partition 
function, so actually

– if 2 nuclei are identical, 180 rotation can’t be distinguished 
from original configuration 
 have overcounted number of 
distinguishable states by 2

• Does not effect erot or cv,rot since
they depend on lnQ=(Q)/Q
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Symmetry factor

More accurate explanation based on 
nuclear spin and symmetry requirements

Wave function requires specific type of 
symmetry for Boson/Fermion (determined 
by nuclear spins)

Symmetry type flips for odd vs even J, so 
half the rotational states are missing for 
homonuclear diatomics 



4

Diatomic Properties-7

School of Aerospace Engineering

Copyright  © 2009, 2022, 2023, 2025 by Jerry M. Seitzman. 

All rights reserved.
AE/ME 6765

Vibrational Partition Function: Qvib

• Assuming harmonic oscillator

– which also has gvib=1 (no degeneracy)

• So

• From Taylor series expansion for

– we can see if we let x=e−v/T
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Vibrational Energy

• Get macroscopic energy 

from

• Also
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Vibrational Energy
• Normalizing expressions

• Limits
– for v/T >> 1, ev/T →

• evib → ½Rv

• cv,vib→0   

– for v/T << 1

• evib → Rv (½ + T/v)

• cv,vib→ R

1

1

2

1

−
+=

T
v

vib

veR

e



2

2

1






 −









=

T

T

vv

v

v

vib

e

e

TR

c





...
!2

1
1

2

vvv +







++=

TT
e

T 

Diatomic Properties-10

School of Aerospace Engineering

Copyright  © 2009, 2022, 2023, 2025 by Jerry M. Seitzman. 

All rights reserved.
AE/ME 6765

Gas r(K) v(K) Qel 

 H2 85 6300 1 +  e-132,000/T 

 NH 24 4496 3   + 2e-18,250/T+2e-30,490/T 

 OH  27 5370 2 + 2e-125/T   +2e-47,000/T 

 N2 2.88 3390 1 + 2e-99,600/T 

 CO 2.8 3120 1 + 2e-93,500/T 

 NO  2.44 2740 2 + 2e-174/T    +2e-63,300/T 

 O2  2.08 2270 3 + 2e-11,400/T 

 

Typical Values for Diatomic Molecules

• For typical conditions r << T ~< v  << el,1 

m

except H2 
at low T

except at 
very high T

except for some 
radicals like NO, OH

but then often 
Qel ~ g0+g1

NH and OH nearly the same mass, O has higher electronegativity than N 

 OH has much stronger bond thus: 1) lower re (and moment of inertia) 

so higher r; and 2) higher kspring (and vibrational frequency) so higher v
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Overall Diatomic Properties
• Combining all modes, i.e., Q=QtrQrotQvibQel, can write

• Specific heat

• Pressure

• Entropy
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Overall Diatomic Properties

• Similarly for the chemical potential
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Example Results: OH 
• Let’s calculate properties of a gas 

using partition function approach 

for simple diatomic: hydroxyl (OH)

– assume TPG, independent energy 

modes with harmonic oscillator, 

rigid rotor
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Accuracy of Results for OH

Simple Model

• Compare these results to accepted standard TD properties
– from JANAF tables https://janaf.nist.gov/

• Entropy 
– good agreement over full range (< 1% difference)

• Specific heat
– excellent agreement for T < 1000-1200 K

– error increase at higher temperatures (~5% at 4000K)
• anharmonic, vibration-rotation coupling effects important

JANAF
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